Multi-time-scale input approaches for hourly-scale rainfall–runoff modeling based on recurrent neural networks
This study proposes two effective approaches to reduce the required computational time of the training process for time-series modeling through a recurrent neural network (RNN) using multi-time-scale time-series data as input. One approach provides coarse and fine temporal resolutions of the input t...
Guardado en:
Autores principales: | Kei Ishida, Masato Kiyama, Ali Ercan, Motoki Amagasaki, Tongbi Tu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f36464a284db4bdab36e3713acd52fd7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application study of IFAS and LSTM models on runoff simulation and flood prediction in the Tokachi River basin
por: Yue-Chao Chen, et al.
Publicado: (2021) -
Modelling the effect of rainfall patterns on the runoff control performance of permeable pavements
por: Shuo Chen, et al.
Publicado: (2021) -
Rainfall runoff features of permeable sidewalk pavement
por: Liyuan Qiu, et al.
Publicado: (2021) -
Genetic programming for hydrological applications: to model or to forecast that is the question
por: Herath Mudiyanselage Viraj Vidura Herath, et al.
Publicado: (2021) -
Identifying and interpreting extreme rainfall events using image classification
por: Andrew Paul Barnes, et al.
Publicado: (2021)