Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal
This paper proposes a method of automatic speaker-independent recognition of human psycho-emotional states by analyzing the speech signal based on Deep Learning technology to solve the problems of aviation profiling. For this purpose, an algorithm to classify seven human psycho-emotional states, inc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Sciendo
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3786aa2b4644fd4a079b9bc8b438ede |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f3786aa2b4644fd4a079b9bc8b438ede |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f3786aa2b4644fd4a079b9bc8b438ede2021-12-05T14:11:11ZAviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal1407-617910.2478/ttj-2021-0037https://doaj.org/article/f3786aa2b4644fd4a079b9bc8b438ede2021-11-01T00:00:00Zhttps://doi.org/10.2478/ttj-2021-0037https://doaj.org/toc/1407-6179This paper proposes a method of automatic speaker-independent recognition of human psycho-emotional states by analyzing the speech signal based on Deep Learning technology to solve the problems of aviation profiling. For this purpose, an algorithm to classify seven human psycho-emotional states, including anger, joy, fear, surprise, disgust, sadness, and neutral state was developed. The algorithm is based on the use of Mel-frequency cepstral coefficients and Mel spectrograms as informative features of speech signals audio recordings. These informative features are used to train two deep convolutional neural networks on the generated dataset. The developed classifier testing on a delayed verification dataset showed that the metric for the multiclass fraction of correct answers’ accuracy is 0.93. The solution proposed in the paper can be in demand in human-machine interfaces creation, medicine, marketing, and in the field of air transportation.Koshekov К.Т.Savostin А.А.Seidakhmetov B.K.Anayatova R.K.Fedorov I.O.Sciendoarticleaviation profilingemotion recognitionspeech signalneural networkTransportation and communicationK4011-4343ENTransport and Telecommunication, Vol 22, Iss 4, Pp 471-481 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
aviation profiling emotion recognition speech signal neural network Transportation and communication K4011-4343 |
spellingShingle |
aviation profiling emotion recognition speech signal neural network Transportation and communication K4011-4343 Koshekov К.Т. Savostin А.А. Seidakhmetov B.K. Anayatova R.K. Fedorov I.O. Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
description |
This paper proposes a method of automatic speaker-independent recognition of human psycho-emotional states by analyzing the speech signal based on Deep Learning technology to solve the problems of aviation profiling. For this purpose, an algorithm to classify seven human psycho-emotional states, including anger, joy, fear, surprise, disgust, sadness, and neutral state was developed. The algorithm is based on the use of Mel-frequency cepstral coefficients and Mel spectrograms as informative features of speech signals audio recordings. These informative features are used to train two deep convolutional neural networks on the generated dataset. The developed classifier testing on a delayed verification dataset showed that the metric for the multiclass fraction of correct answers’ accuracy is 0.93. The solution proposed in the paper can be in demand in human-machine interfaces creation, medicine, marketing, and in the field of air transportation. |
format |
article |
author |
Koshekov К.Т. Savostin А.А. Seidakhmetov B.K. Anayatova R.K. Fedorov I.O. |
author_facet |
Koshekov К.Т. Savostin А.А. Seidakhmetov B.K. Anayatova R.K. Fedorov I.O. |
author_sort |
Koshekov К.Т. |
title |
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
title_short |
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
title_full |
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
title_fullStr |
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
title_full_unstemmed |
Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal |
title_sort |
aviation profiling method based on deep learning technology for emotion recognition by speech signal |
publisher |
Sciendo |
publishDate |
2021 |
url |
https://doaj.org/article/f3786aa2b4644fd4a079b9bc8b438ede |
work_keys_str_mv |
AT koshekovkt aviationprofilingmethodbasedondeeplearningtechnologyforemotionrecognitionbyspeechsignal AT savostinaa aviationprofilingmethodbasedondeeplearningtechnologyforemotionrecognitionbyspeechsignal AT seidakhmetovbk aviationprofilingmethodbasedondeeplearningtechnologyforemotionrecognitionbyspeechsignal AT anayatovark aviationprofilingmethodbasedondeeplearningtechnologyforemotionrecognitionbyspeechsignal AT fedorovio aviationprofilingmethodbasedondeeplearningtechnologyforemotionrecognitionbyspeechsignal |
_version_ |
1718371333019009024 |