Computational neuroscience applied in surface roughness fiber optic sensor
Computational neuroscience has been widely used in fiber optic sensor signal output. This paper introduces a method for processing the Surface Roughness Fiber Optic Sensor output signals with a radial basis function neural network. The output signal of the sensor and the laser intensity signal as th...
Guardado en:
Autor principal: | He Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f37c95ebb36347ff83a34ce3763cb47e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Highly Sensitive Surface Plasmon Resonance Humidity Sensor Based on a Polyvinyl-Alcohol-Coated Polymer Optical Fiber
por: Ying Wang, et al.
Publicado: (2021) -
Chemical sensors based on long period fiber gratings: A review
por: Flavio Esposito
Publicado: (2021) -
Roughness evaluation by wearable tactile sensor utilizing human active sensing
por: Yoshihiro TANAKA, et al.
Publicado: (2016) -
Investigation on the feasibility of utilization wood and OCC fiber on the surface
layer of particleboard and their effects on surface hardness and roughness
por: Kazem Dost hosseini, et al.
Publicado: (2010) -
Evaluation of wood surface roughness depending on species characteristics
por: Thoma,Hektor, et al.
Publicado: (2015)