Whole body potassium as a biomarker for potassium uptake using a mouse model
Abstract Potassium is known for its effect on modifiable chronic diseases like hypertension, cardiac disease, diabetes (type-2), and bone health. In this study, a new method, neutron generator based neutron activation analysis (NAA), was utilized to measure potassium (K) in mouse carcasses. A DD110...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3810f8064d1477eae0af8d2b253f9e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Potassium is known for its effect on modifiable chronic diseases like hypertension, cardiac disease, diabetes (type-2), and bone health. In this study, a new method, neutron generator based neutron activation analysis (NAA), was utilized to measure potassium (K) in mouse carcasses. A DD110 neutron generator based NAA assembly was used for irradiation.Thirty-two postmortem mice (n= 16 males and 16 females, average weight $$22.02\pm 1.3$$ 22.02 ± 1.3 and $$17.9\pm 1.1$$ 17.9 ± 1.1 g) were employed for this study. Soft-tissue equivalent mouse phantoms were prepared for the calibration. All mice were irradiated for 10 minutes, and the gamma spectrum with 42K was collected using a high efficiency, high purity germanium (HPGe) detector. A lead shielding assembly was designed and developed around the HPGe detector to obtain an improved detection limit. Each mouse sample was irradiated and measured twice to reduce uncertainty. The average potassium concentration was found to be significantly higher in males $$(2846 \pm 525 \upmu g/g)$$ ( 2846 ± 525 μ g / g ) compared to females $$(2116.2 \pm 432 \upmu g/g)$$ ( 2116.2 ± 432 μ g / g ) . We also observed a significant correlation between potassium concentration and the weight of the mice. The detection limit for potassium quantification with the NAA system was 46 ppm. The radiation dose to the mouse was approximately 56 $${ \pm 1.6 }$$ ± 1.6 mSv for 10-min irradiation. In conclusion, this method is suitable for estimating individual potassium concentration in small animals. The direct evaluation of total body potassium in small animals provides a new way to estimate potassium uptake in animal models. This method can be adapted later to quantify potassium in the human hand and small animals in vivo. When used in vivo, it is also expected to be a valuable tool for longitudinal assessment, kinetics, and health outcomes. |
---|