The Polyamine Spermidine Modulates the Production of the Bacterial Genotoxin Colibactin

ABSTRACT Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Camille V. Chagneau, Christophe Garcie, Nadège Bossuet-Greif, Sophie Tronnet, Alexander O. Brachmann, Jörn Piel, Jean-Philippe Nougayrède, Patricia Martin, Eric Oswald
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/f385369a64724228830f1876acd7b499
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli. Supplying spermidine in a ΔspeE pks+ E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis. IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.