Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
Abstract Streamflow (Q flow ) prediction is one of the essential steps for the reliable and robust water resources planning and management. It is highly vital for hydropower operation, agricultural planning, and flood control. In this study, the convolution neural network (CNN) and Long-Short-term M...
Guardado en:
Autores principales: | Sujan Ghimire, Zaher Mundher Yaseen, Aitazaz A. Farooque, Ravinesh C. Deo, Ji Zhang, Xiaohui Tao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f385ee43566f48ba899a6612e300ffb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multistage Real-Time Fire Detection Using Convolutional Neural Networks and Long Short-Term Memory Networks
por: Manh Dung Nguyen, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis of Bearing Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
por: Dazhang You, et al.
Publicado: (2021) -
An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network
por: Muhammad Fayaz, et al.
Publicado: (2021) -
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Ahmed Bahaa Farid, et al.
Publicado: (2021) -
Prediction of gait trajectories based on the Long Short Term Memory neural networks.
por: Abdelrahman Zaroug, et al.
Publicado: (2021)