Performance of objective functions and optimisation procedures for parameter estimation in system biology models

Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experime...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrea Degasperi, Dirk Fey, Boris N. Kholodenko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/f39d9d389cf242828144b415430ae66d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f39d9d389cf242828144b415430ae66d
record_format dspace
spelling oai:doaj.org-article:f39d9d389cf242828144b415430ae66d2021-12-02T12:33:54ZPerformance of objective functions and optimisation procedures for parameter estimation in system biology models10.1038/s41540-017-0023-22056-7189https://doaj.org/article/f39d9d389cf242828144b415430ae66d2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41540-017-0023-2https://doaj.org/toc/2056-7189Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experimental data are often provided in relative, arbitrary units. To match simulations to data, two approaches are common: i) using scaling-factors that have to be estimated (SF); or ii) normalising the simulations in the same way as the data (DNS). Using three test-models of increasing complexity, we explored how this choice affects parameter identifiability and estimation performance. We show that in contrast to SF, DNS does not aggravate non-identifiability and a global-hybrid method combined with DNS outperformed local-multi-start methods. The advantage of DNS in terms of estimation speed was particularly pronounced for the most complex test-problem.Andrea DegasperiDirk FeyBoris N. KholodenkoNature PortfolioarticleBiology (General)QH301-705.5ENnpj Systems Biology and Applications, Vol 3, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Andrea Degasperi
Dirk Fey
Boris N. Kholodenko
Performance of objective functions and optimisation procedures for parameter estimation in system biology models
description Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experimental data are often provided in relative, arbitrary units. To match simulations to data, two approaches are common: i) using scaling-factors that have to be estimated (SF); or ii) normalising the simulations in the same way as the data (DNS). Using three test-models of increasing complexity, we explored how this choice affects parameter identifiability and estimation performance. We show that in contrast to SF, DNS does not aggravate non-identifiability and a global-hybrid method combined with DNS outperformed local-multi-start methods. The advantage of DNS in terms of estimation speed was particularly pronounced for the most complex test-problem.
format article
author Andrea Degasperi
Dirk Fey
Boris N. Kholodenko
author_facet Andrea Degasperi
Dirk Fey
Boris N. Kholodenko
author_sort Andrea Degasperi
title Performance of objective functions and optimisation procedures for parameter estimation in system biology models
title_short Performance of objective functions and optimisation procedures for parameter estimation in system biology models
title_full Performance of objective functions and optimisation procedures for parameter estimation in system biology models
title_fullStr Performance of objective functions and optimisation procedures for parameter estimation in system biology models
title_full_unstemmed Performance of objective functions and optimisation procedures for parameter estimation in system biology models
title_sort performance of objective functions and optimisation procedures for parameter estimation in system biology models
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/f39d9d389cf242828144b415430ae66d
work_keys_str_mv AT andreadegasperi performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels
AT dirkfey performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels
AT borisnkholodenko performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels
_version_ 1718393895118700544