Performance of objective functions and optimisation procedures for parameter estimation in system biology models
Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experime...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f39d9d389cf242828144b415430ae66d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f39d9d389cf242828144b415430ae66d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f39d9d389cf242828144b415430ae66d2021-12-02T12:33:54ZPerformance of objective functions and optimisation procedures for parameter estimation in system biology models10.1038/s41540-017-0023-22056-7189https://doaj.org/article/f39d9d389cf242828144b415430ae66d2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41540-017-0023-2https://doaj.org/toc/2056-7189Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experimental data are often provided in relative, arbitrary units. To match simulations to data, two approaches are common: i) using scaling-factors that have to be estimated (SF); or ii) normalising the simulations in the same way as the data (DNS). Using three test-models of increasing complexity, we explored how this choice affects parameter identifiability and estimation performance. We show that in contrast to SF, DNS does not aggravate non-identifiability and a global-hybrid method combined with DNS outperformed local-multi-start methods. The advantage of DNS in terms of estimation speed was particularly pronounced for the most complex test-problem.Andrea DegasperiDirk FeyBoris N. KholodenkoNature PortfolioarticleBiology (General)QH301-705.5ENnpj Systems Biology and Applications, Vol 3, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Andrea Degasperi Dirk Fey Boris N. Kholodenko Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
description |
Systems biology: Performance of parameter estimation procedures A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experimental data are often provided in relative, arbitrary units. To match simulations to data, two approaches are common: i) using scaling-factors that have to be estimated (SF); or ii) normalising the simulations in the same way as the data (DNS). Using three test-models of increasing complexity, we explored how this choice affects parameter identifiability and estimation performance. We show that in contrast to SF, DNS does not aggravate non-identifiability and a global-hybrid method combined with DNS outperformed local-multi-start methods. The advantage of DNS in terms of estimation speed was particularly pronounced for the most complex test-problem. |
format |
article |
author |
Andrea Degasperi Dirk Fey Boris N. Kholodenko |
author_facet |
Andrea Degasperi Dirk Fey Boris N. Kholodenko |
author_sort |
Andrea Degasperi |
title |
Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
title_short |
Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
title_full |
Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
title_fullStr |
Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
title_full_unstemmed |
Performance of objective functions and optimisation procedures for parameter estimation in system biology models |
title_sort |
performance of objective functions and optimisation procedures for parameter estimation in system biology models |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/f39d9d389cf242828144b415430ae66d |
work_keys_str_mv |
AT andreadegasperi performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels AT dirkfey performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels AT borisnkholodenko performanceofobjectivefunctionsandoptimisationproceduresforparameterestimationinsystembiologymodels |
_version_ |
1718393895118700544 |