Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny

Abstract Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specifi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wiebke Hartmann, Birte Blankenhaus, Marie-Luise Brunn, Jana Meiners, Minka Breloer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f3c26d072329439ea2776bc719c1441d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f3c26d072329439ea2776bc719c1441d
record_format dspace
spelling oai:doaj.org-article:f3c26d072329439ea2776bc719c1441d2021-12-02T14:12:08ZElucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny10.1038/s41598-020-79477-72045-2322https://doaj.org/article/f3c26d072329439ea2776bc719c1441d2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79477-7https://doaj.org/toc/2045-2322Abstract Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3− T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.Wiebke HartmannBirte BlankenhausMarie-Luise BrunnJana MeinersMinka BreloerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Wiebke Hartmann
Birte Blankenhaus
Marie-Luise Brunn
Jana Meiners
Minka Breloer
Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
description Abstract Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3− T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.
format article
author Wiebke Hartmann
Birte Blankenhaus
Marie-Luise Brunn
Jana Meiners
Minka Breloer
author_facet Wiebke Hartmann
Birte Blankenhaus
Marie-Luise Brunn
Jana Meiners
Minka Breloer
author_sort Wiebke Hartmann
title Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
title_short Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
title_full Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
title_fullStr Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
title_full_unstemmed Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny
title_sort elucidating different pattern of immunoregulation in balb/c and c57bl/6 mice and their f1 progeny
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f3c26d072329439ea2776bc719c1441d
work_keys_str_mv AT wiebkehartmann elucidatingdifferentpatternofimmunoregulationinbalbcandc57bl6miceandtheirf1progeny
AT birteblankenhaus elucidatingdifferentpatternofimmunoregulationinbalbcandc57bl6miceandtheirf1progeny
AT marieluisebrunn elucidatingdifferentpatternofimmunoregulationinbalbcandc57bl6miceandtheirf1progeny
AT janameiners elucidatingdifferentpatternofimmunoregulationinbalbcandc57bl6miceandtheirf1progeny
AT minkabreloer elucidatingdifferentpatternofimmunoregulationinbalbcandc57bl6miceandtheirf1progeny
_version_ 1718391821532397568