An Effective Clustering Algorithm Using Adaptive Neighborhood and Border Peeling Method
Traditional clustering methods often cannot avoid the problem of selecting neighborhood parameters and the number of clusters, and the optimal selection of these parameters varies among different shapes of data, which requires prior knowledge. To address the above parameter selection problem, we pro...
Guardado en:
Autores principales: | Ji Feng, Bokai Zhang, Ruisheng Ran, Wanli Zhang, Degang Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3c3e7aa0712468ca13c2a8aa79add12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pairwise Biological Network Alignment Based on Discrete Bat Algorithm
por: Jing Chen, et al.
Publicado: (2021) -
Intelligent Diagnosis of Cervical Cancer Based on Data Mining Algorithm
por: Lei Zhang, et al.
Publicado: (2021) -
Diagnostic Classification of Patients with Dilated Cardiomyopathy Using Ventricular Strain Analysis Algorithm
por: Mingliang Li, et al.
Publicado: (2021) -
Audit Data Analysis and Application Based on Correlation Analysis Algorithm
por: Jifan Chen, et al.
Publicado: (2021) -
Keratoconus Severity Classification Using Features Selection and Machine Learning Algorithms
por: Mustapha Aatila, et al.
Publicado: (2021)