Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
Recent advancements in deep reinforcement learning (DRL) have led to its application in multi-agent scenarios to solve complex real-world problems, such as network resource allocation and sharing, network routing, and traffic signal controls. Multi-agent DRL (MADRL) enables multiple agents to intera...
Guardado en:
Autores principales: | Abdikarim Mohamed Ibrahim, Kok-Lim Alvin Yau, Yung-Wey Chong, Celimuge Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3c7b1961f864e5a94614c615dbe262a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning
por: Kaifang Wan, et al.
Publicado: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
por: Deog-Yeong Park, et al.
Publicado: (2021) -
A Control Algorithm for Sea–Air Cooperative Observation Tasks Based on a Data-Driven Algorithm
por: Kai Hu, et al.
Publicado: (2021)