Novel free paclitaxel-loaded poly(L-γ-glutamylglutamine)–paclitaxel nanoparticles

Danbo Yang1, Sang Van2, Xinguo Jiang3, Lei Yu1,21Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Biomedical Group, Nitto Denko Technical Corporation, Oceanside, CA, U...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Danbo Yang, Sang Van, Xinguo Jiang, et al
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://doaj.org/article/f3d2c1ce70a3477c98d98cb1fdd74c86
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Danbo Yang1, Sang Van2, Xinguo Jiang3, Lei Yu1,21Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Biomedical Group, Nitto Denko Technical Corporation, Oceanside, CA, USA; 3School of Pharmacy, Fudan University, Shanghai, People's Republic of ChinaAbstract: The purpose of this study was to develop a novel formulation of paclitaxel (PTX) that would improve its therapeutic index. Here, we combined a concept of polymer–PTX drug conjugate with a concept of polymeric micelle drug delivery to form novel free PTX-loaded poly(L-γ-glutamylglutamine) (PGG)–PTX conjugate nanoparticles. The significance of this drug formulation emphasizes the simplicity, novelty, and flexibility of the method of forming nanoparticles that contain free PTX and conjugated PTX in the same drug delivery system. The results of effectively inhibiting tumor growth in mouse models demonstrated the feasibility of the nanoparticle formulation. The versatility and potential of this dual PTX drug delivery system can be explored with different drugs for different indications. Novel and simple formulations of PTX-loaded PGG–PTX nanoparticles could have important implications in translational medicines.Keywords: paclitaxel, polymeric micelle, poly(L-γ-glutamylglutamine)–paclitaxel, nanoconjugate, nanoparticles