Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set
In this paper, we have modified the Detrended Fluctuation Analysis (DFA) using the ternary Cantor set. We propose a modification of the DFA algorithm, Cantor DFA (CDFA), which uses the Cantor set theory of base 3 as a scale for segment sizes in the DFA algorithm. An investigation of the phenomena ge...
Enregistré dans:
Auteurs principaux: | Maria C. Mariani, William Kubin, Peter K. Asante, Joe A. Guthrie, Osei K. Tweneboah |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f3d92cf3fb314ae0932fef09426a9c00 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent
par: Francisco Gerardo Benavides-Bravo, et autres
Publié: (2021) -
Small-Angle Scattering from Fractional Brownian Surfaces
par: Eugen Mircea Anitas
Publié: (2021) -
Fractal Analysis of Dynamics of Coefficients of a Financial Standing of the Company
par: Irina Yurevna Motorina, et autres
Publié: (2018) -
Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent
par: Huajin Li, et autres
Publié: (2021) -
On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
par: Arredondo John A., et autres
Publié: (2019)