State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predicti...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3db04ada827413392a0875994a0169d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f3db04ada827413392a0875994a0169d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f3db04ada827413392a0875994a0169d2021-12-02T17:32:14ZState-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis10.1038/s41467-020-19266-y2041-1723https://doaj.org/article/f3db04ada827413392a0875994a0169d2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19266-yhttps://doaj.org/toc/2041-1723Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predictions.Igor V. TetkoPavel KarpovRuud Van DeursenGuillaume GodinNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Igor V. Tetko Pavel Karpov Ruud Van Deursen Guillaume Godin State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
description |
Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predictions. |
format |
article |
author |
Igor V. Tetko Pavel Karpov Ruud Van Deursen Guillaume Godin |
author_facet |
Igor V. Tetko Pavel Karpov Ruud Van Deursen Guillaume Godin |
author_sort |
Igor V. Tetko |
title |
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
title_short |
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
title_full |
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
title_fullStr |
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
title_full_unstemmed |
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis |
title_sort |
state-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/f3db04ada827413392a0875994a0169d |
work_keys_str_mv |
AT igorvtetko stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis AT pavelkarpov stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis AT ruudvandeursen stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis AT guillaumegodin stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis |
_version_ |
1718380407550902272 |