State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis

Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predicti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, Guillaume Godin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/f3db04ada827413392a0875994a0169d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f3db04ada827413392a0875994a0169d
record_format dspace
spelling oai:doaj.org-article:f3db04ada827413392a0875994a0169d2021-12-02T17:32:14ZState-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis10.1038/s41467-020-19266-y2041-1723https://doaj.org/article/f3db04ada827413392a0875994a0169d2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19266-yhttps://doaj.org/toc/2041-1723Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predictions.Igor V. TetkoPavel KarpovRuud Van DeursenGuillaume GodinNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Igor V. Tetko
Pavel Karpov
Ruud Van Deursen
Guillaume Godin
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
description Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predictions.
format article
author Igor V. Tetko
Pavel Karpov
Ruud Van Deursen
Guillaume Godin
author_facet Igor V. Tetko
Pavel Karpov
Ruud Van Deursen
Guillaume Godin
author_sort Igor V. Tetko
title State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
title_short State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
title_full State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
title_fullStr State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
title_full_unstemmed State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
title_sort state-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/f3db04ada827413392a0875994a0169d
work_keys_str_mv AT igorvtetko stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis
AT pavelkarpov stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis
AT ruudvandeursen stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis
AT guillaumegodin stateoftheartaugmentednlptransformermodelsfordirectandsinglestepretrosynthesis
_version_ 1718380407550902272