State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predicti...
Guardado en:
Autores principales: | Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, Guillaume Godin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3db04ada827413392a0875994a0169d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Retrosynthesis of multi-component metal−organic frameworks
por: Shuai Yuan, et al.
Publicado: (2018) -
RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans
por: Petrus Van der Auwera, et al.
Publicado: (2020) -
Biodiversity in NLP: modelling lexical meaning with the Fruit Fly Algorithm
por: Simon Preissner, et al.
Publicado: (2020) -
The presence of occupational structure in online texts based on word embedding NLP models
por: Zoltán Kmetty, et al.
Publicado: (2021) -
EVALITA4ELG: Italian Benchmark Linguistic Resources, NLP Services and Tools for the ELG Platform
por: Viviana Patti, et al.
Publicado: (2020)