Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface

Understanding heat transfer across an interface is essential to a variety of applications, including thermal energy storage systems. Recent studies have shown that introducing a self-assembled monolayer (SAM) can decrease thermal resistance between solid and fluid. However, the effects of the molecu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lijian Song, Youchen Zhang, Weimin Yang, Jing Tan, Lisheng Cheng
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
PEG
Acceso en línea:https://doaj.org/article/f3e0b08a150242019e166d12206b3602
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f3e0b08a150242019e166d12206b3602
record_format dspace
spelling oai:doaj.org-article:f3e0b08a150242019e166d12206b36022021-11-11T18:45:34ZMolecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface10.3390/polym132137322073-4360https://doaj.org/article/f3e0b08a150242019e166d12206b36022021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3732https://doaj.org/toc/2073-4360Understanding heat transfer across an interface is essential to a variety of applications, including thermal energy storage systems. Recent studies have shown that introducing a self-assembled monolayer (SAM) can decrease thermal resistance between solid and fluid. However, the effects of the molecular structure of SAM on interfacial thermal resistance (ITR) are still unclear. Using the gold–SAM/PEG system as a model, we performed nonequilibrium molecular dynamics simulations to calculate the ITR between the PEG and gold. We found that increasing the SAM angle value from 100° to 150° could decrease ITR from 140.85 × 10<sup>−9</sup> to 113.79 × 10<sup>−9</sup> m<sup>2</sup> K/W owing to penetration of PEG into SAM chains, which promoted thermal transport across the interface. Moreover, a strong dependence of ITR on bond strength was also observed. When the SAM bond strength increased from 2 to 640 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">kcal</mi><mo mathvariant="normal">⋅</mo><msup><mrow><mi mathvariant="normal">mol</mi></mrow><mrow><mo mathvariant="normal">−</mo><mn mathvariant="normal">1</mn></mrow></msup><msup><mi mathvariant="sans-serif">Å</mi><mrow><mo mathvariant="normal">−</mo><mn mathvariant="normal">2</mn></mrow></msup></mrow></semantics></math></inline-formula>, ITR first decreased from 106.88 × 10<sup>−9</sup> to 102.69 × 10<sup>−9</sup> m<sup>2</sup> K/W and then increased to 123.02 × 10<sup>−9</sup> m<sup>2</sup> K/W until reaching a steady state. The minimum ITR was obtained when the bond strength of SAM was close to that of PEG melt. The matching vibrational spectra facilitated the thermal transport between SAM chains and PEG. This work provides helpful information regarding the optimized design of SAM to enhance interfacial thermal transport.Lijian SongYouchen ZhangWeimin YangJing TanLisheng ChengMDPI AGarticlemolecular dynamic simulationcoarse-grainedthermal resistanceself-assembled monolayerPEGOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3732, p 3732 (2021)
institution DOAJ
collection DOAJ
language EN
topic molecular dynamic simulation
coarse-grained
thermal resistance
self-assembled monolayer
PEG
Organic chemistry
QD241-441
spellingShingle molecular dynamic simulation
coarse-grained
thermal resistance
self-assembled monolayer
PEG
Organic chemistry
QD241-441
Lijian Song
Youchen Zhang
Weimin Yang
Jing Tan
Lisheng Cheng
Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
description Understanding heat transfer across an interface is essential to a variety of applications, including thermal energy storage systems. Recent studies have shown that introducing a self-assembled monolayer (SAM) can decrease thermal resistance between solid and fluid. However, the effects of the molecular structure of SAM on interfacial thermal resistance (ITR) are still unclear. Using the gold–SAM/PEG system as a model, we performed nonequilibrium molecular dynamics simulations to calculate the ITR between the PEG and gold. We found that increasing the SAM angle value from 100° to 150° could decrease ITR from 140.85 × 10<sup>−9</sup> to 113.79 × 10<sup>−9</sup> m<sup>2</sup> K/W owing to penetration of PEG into SAM chains, which promoted thermal transport across the interface. Moreover, a strong dependence of ITR on bond strength was also observed. When the SAM bond strength increased from 2 to 640 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">kcal</mi><mo mathvariant="normal">⋅</mo><msup><mrow><mi mathvariant="normal">mol</mi></mrow><mrow><mo mathvariant="normal">−</mo><mn mathvariant="normal">1</mn></mrow></msup><msup><mi mathvariant="sans-serif">Å</mi><mrow><mo mathvariant="normal">−</mo><mn mathvariant="normal">2</mn></mrow></msup></mrow></semantics></math></inline-formula>, ITR first decreased from 106.88 × 10<sup>−9</sup> to 102.69 × 10<sup>−9</sup> m<sup>2</sup> K/W and then increased to 123.02 × 10<sup>−9</sup> m<sup>2</sup> K/W until reaching a steady state. The minimum ITR was obtained when the bond strength of SAM was close to that of PEG melt. The matching vibrational spectra facilitated the thermal transport between SAM chains and PEG. This work provides helpful information regarding the optimized design of SAM to enhance interfacial thermal transport.
format article
author Lijian Song
Youchen Zhang
Weimin Yang
Jing Tan
Lisheng Cheng
author_facet Lijian Song
Youchen Zhang
Weimin Yang
Jing Tan
Lisheng Cheng
author_sort Lijian Song
title Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
title_short Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
title_full Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
title_fullStr Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
title_full_unstemmed Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface
title_sort molecular structure effect of a self-assembled monolayer on thermal resistance across an interface
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f3e0b08a150242019e166d12206b3602
work_keys_str_mv AT lijiansong molecularstructureeffectofaselfassembledmonolayeronthermalresistanceacrossaninterface
AT youchenzhang molecularstructureeffectofaselfassembledmonolayeronthermalresistanceacrossaninterface
AT weiminyang molecularstructureeffectofaselfassembledmonolayeronthermalresistanceacrossaninterface
AT jingtan molecularstructureeffectofaselfassembledmonolayeronthermalresistanceacrossaninterface
AT lishengcheng molecularstructureeffectofaselfassembledmonolayeronthermalresistanceacrossaninterface
_version_ 1718431740320546816