Surface protein imputation from single cell transcriptomes by deep neural networks
Cell-surface proteins serve as phenotypic cell markers and in many cases are more indicative of cellular function than the transcriptome. Here, the authors introduce a transfer learning framework to impute surface protein abundances from scRNA-seq data.
Guardado en:
Autores principales: | Zilu Zhou, Chengzhong Ye, Jingshu Wang, Nancy R. Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3f0dd0683dd476f946e529ea4212892 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep generative neural network for accurate drug response imputation
por: Peilin Jia, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Wei Vivian Li, et al.
Publicado: (2018) -
A Deep-Learning Pipeline for TSS Coverage Imputation From Shallow Cell-Free DNA Sequencing
por: Bo-Wei Han, et al.
Publicado: (2021) -
Association of imputed prostate cancer transcriptome with disease risk reveals novel mechanisms
por: Nima C. Emami, et al.
Publicado: (2019)