Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson’s Disease
Abstract In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predicti...
Enregistré dans:
Auteurs principaux: | Chao Gao, Hanbo Sun, Tuo Wang, Ming Tang, Nicolaas I. Bohnen, Martijn L. T. M. Müller, Talia Herman, Nir Giladi, Alexandr Kalinin, Cathie Spino, William Dauer, Jeffrey M. Hausdorff, Ivo D. Dinov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f3f7a8e86fd34267bf9c85a913def857 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predictive models for the diagnostic of human visceral leishmaniasis in Brazil.
par: Tália S Machado de Assis, et autres
Publié: (2012) -
Protocol for the DeFOG trial: A randomized controlled trial on the effects of smartphone-based, on-demand cueing for freezing of gait in Parkinson's disease
par: Demi Zoetewei, et autres
Publié: (2021) -
Test-level and Item-level Model Fit Comparison of General vs. Specific Diagnostic Classification Models: A Case of True DCM
par: Mahdieh Shafipoor, et autres
Publié: (2021) -
Classification of α-synuclein-induced changes in the AAV α-synuclein rat model of Parkinson’s disease using electrophysiological measurements of visual processing
par: Freja Gam Østergaard, et autres
Publié: (2020) -
Robust diagnostic classification via Q-learning
par: Victor Ardulov, et autres
Publié: (2021)