A Comparative Study of Soft Computing Models for Prediction of Permeability Coefficient of Soil
Determination of the permeability coefficient (K) of soil is considered as one of the essential steps to assess infiltration, runoff, groundwater, and drainage in the design process of the construction projects. In this study, three cost-effective algorithms, namely, artificial neural network (ANN),...
Guardado en:
Autores principales: | Binh Thai Pham, Manh Duc Nguyen, Nadhir Al-Ansari, Quoc Anh Tran, Lanh Si Ho, Hiep Van Le, Indra Prakash |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3fd6398612e4faaa6c78da25976c565 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient
por: Binh Thai Pham, et al.
Publicado: (2021) -
On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils
por: Duong Kien Trong, et al.
Publicado: (2021) -
Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils
por: Marian Marschalko, et al.
Publicado: (2021) -
Pesticide production wastewater treatment by Electro-Fenton using Taguchi experimental design
por: Thanh Luu Pham, et al.
Publicado: (2021) -
Approximation of Capacity for Downlink Multi-User System with Combination of Precoding and NOMA Methods
por: Vu Van Son, et al.
Publicado: (2021)