Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.)
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluza...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f41a95b038f2407eac01ee14e4416162 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f41a95b038f2407eac01ee14e4416162 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f41a95b038f2407eac01ee14e44161622021-11-25T18:47:18ZNanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.)10.3390/plants101125172223-7747https://doaj.org/article/f41a95b038f2407eac01ee14e44161622021-11-01T00:00:00Zhttps://www.mdpi.com/2223-7747/10/11/2517https://doaj.org/toc/2223-7747Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton.Yajun LiangZhaolong GongJunduo WangJuyun ZhengYizan MaLing MinQin ChenZhiqiang LiYanying QuQuanjia ChenXueyuan LiMDPI AGarticlecottonhigh-temperaturetranscriptometoleranceBotanyQK1-989ENPlants, Vol 10, Iss 2517, p 2517 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cotton high-temperature transcriptome tolerance Botany QK1-989 |
spellingShingle |
cotton high-temperature transcriptome tolerance Botany QK1-989 Yajun Liang Zhaolong Gong Junduo Wang Juyun Zheng Yizan Ma Ling Min Qin Chen Zhiqiang Li Yanying Qu Quanjia Chen Xueyuan Li Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
description |
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton. |
format |
article |
author |
Yajun Liang Zhaolong Gong Junduo Wang Juyun Zheng Yizan Ma Ling Min Qin Chen Zhiqiang Li Yanying Qu Quanjia Chen Xueyuan Li |
author_facet |
Yajun Liang Zhaolong Gong Junduo Wang Juyun Zheng Yizan Ma Ling Min Qin Chen Zhiqiang Li Yanying Qu Quanjia Chen Xueyuan Li |
author_sort |
Yajun Liang |
title |
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
title_short |
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
title_full |
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
title_fullStr |
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
title_full_unstemmed |
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) |
title_sort |
nanopore-based comparative transcriptome analysis reveals the potential mechanism of high-temperature tolerance in cotton (<i>gossypium hirsutum</i> l.) |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f41a95b038f2407eac01ee14e4416162 |
work_keys_str_mv |
AT yajunliang nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT zhaolonggong nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT junduowang nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT juyunzheng nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT yizanma nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT lingmin nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT qinchen nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT zhiqiangli nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT yanyingqu nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT quanjiachen nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil AT xueyuanli nanoporebasedcomparativetranscriptomeanalysisrevealsthepotentialmechanismofhightemperaturetoleranceincottonigossypiumhirsutumil |
_version_ |
1718410749605314560 |