A profile-based sentiment-aware approach for depression detection in social media
Abstract Depression is a severe mental health problem. Due to its relevance, the development of computational tools for its detection has attracted increasing attention in recent years. In this context, several research works have addressed the problem using word-based approaches (e.g., a bag of wor...
Enregistré dans:
Auteurs principaux: | José de Jesús Titla-Tlatelpa, Rosa María Ortega-Mendoza, Manuel Montes-y-Gómez, Luis Villaseñor-Pineda |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f436163ae1b54c9f9d1cc93b3b6f2151 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Context Aware Joint Segmentation and Classification Framework for Glaucoma Detection
par: S. Sankar Ganesh, et autres
Publié: (2021) -
Evaluation of the Effect of Comprehensive Nursing in Psychotherapy of Patients with Depression
par: Jialing Liu, et autres
Publié: (2021) -
Social media language of healthcare super-utilizers
par: Sharath Chandra Guntuku, et autres
Publié: (2021) -
Smartphone apps for depression and anxiety: a systematic review and meta-analysis of techniques to increase engagement
par: Ashley Wu, et autres
Publié: (2021) -
A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety
par: Derek Richards, et autres
Publié: (2020)