A wavelength-convertible quantum memory: Controlled echo

Abstract Quantum coherence control is reinvestigated for a new physical insight in quantum nonlinear optics and applied for a wavelength-convertible quantum memory in a solid ensemble whose spin states are inhomogeneously broadened. Unlike typical atomic media whose spin decays are homogeneous, a sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Byoung S. Ham
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f43e3d7dc00549068c4464ef0e477d0b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Quantum coherence control is reinvestigated for a new physical insight in quantum nonlinear optics and applied for a wavelength-convertible quantum memory in a solid ensemble whose spin states are inhomogeneously broadened. Unlike typical atomic media whose spin decays are homogeneous, a spin inhomogeneously broadened solid ensemble requires a counter-intuitive quantum coherence control to avoid spontaneous emission-caused quantum noises. Such a quantum coherence control in a solid ensemble satisfying both near perfect retrieval efficiency and ultralong photon storage offers a solid framework to quantum repeaters, scalable qubit generations, quantum cryptography, and highly sensitive magnetometry. Here, the basic physics of the counter-intuitive quantum coherence control is presented not only for a fundamental understanding of collective ensemble phase control but also for a coherence conversion mechanism between optical and spin states involving Raman rephasing.