Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes
Abstract Discovery of robust diagnostic or prognostic biomarkers is a key to optimizing therapeutic benefit for select patient cohorts - an idea commonly referred to as precision medicine. Most discovery studies to derive such markers from high-dimensional transcriptomics datasets are weakly powered...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f44a5a3539404d7d921e917d3bb63b7d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f44a5a3539404d7d921e917d3bb63b7d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f44a5a3539404d7d921e917d3bb63b7d2021-12-02T15:08:34ZRobust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes10.1038/s41598-018-19635-02045-2322https://doaj.org/article/f44a5a3539404d7d921e917d3bb63b7d2018-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-19635-0https://doaj.org/toc/2045-2322Abstract Discovery of robust diagnostic or prognostic biomarkers is a key to optimizing therapeutic benefit for select patient cohorts - an idea commonly referred to as precision medicine. Most discovery studies to derive such markers from high-dimensional transcriptomics datasets are weakly powered with sample sizes in the tens of patients. Therefore, highly regularized statistical approaches are essential to making generalizable predictions. At the same time, prior knowledge-driven approaches have been successfully applied to the manual interpretation of high-dimensional transcriptomics datasets. In this work, we assess the impact of combining two orthogonal approaches for the discovery of biomarker signatures, namely (1) well-known lasso-based regression approaches and its more recent derivative, the group lasso, and (2) the discovery of significant upstream regulators in literature-derived biological networks. Our method integrates both approaches in a weighted group-lasso model and differentially weights gene sets based on inferred active regulatory mechanism. Using nested cross-validation as well as independent clinical datasets, we demonstrate that our approach leads to increased accuracy and generalizable results. We implement our approach in a computationally efficient, user-friendly R package called creNET. The package can be downloaded at https://github.com/kouroshz/creNethttps://github.com/kouroshz/creNet and is accompanied by a parsed version of the STRING DB data base.Kourosh ZarringhalamDavid DegrasChristoph BrockelDaniel ZiemekNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kourosh Zarringhalam David Degras Christoph Brockel Daniel Ziemek Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
description |
Abstract Discovery of robust diagnostic or prognostic biomarkers is a key to optimizing therapeutic benefit for select patient cohorts - an idea commonly referred to as precision medicine. Most discovery studies to derive such markers from high-dimensional transcriptomics datasets are weakly powered with sample sizes in the tens of patients. Therefore, highly regularized statistical approaches are essential to making generalizable predictions. At the same time, prior knowledge-driven approaches have been successfully applied to the manual interpretation of high-dimensional transcriptomics datasets. In this work, we assess the impact of combining two orthogonal approaches for the discovery of biomarker signatures, namely (1) well-known lasso-based regression approaches and its more recent derivative, the group lasso, and (2) the discovery of significant upstream regulators in literature-derived biological networks. Our method integrates both approaches in a weighted group-lasso model and differentially weights gene sets based on inferred active regulatory mechanism. Using nested cross-validation as well as independent clinical datasets, we demonstrate that our approach leads to increased accuracy and generalizable results. We implement our approach in a computationally efficient, user-friendly R package called creNET. The package can be downloaded at https://github.com/kouroshz/creNethttps://github.com/kouroshz/creNet and is accompanied by a parsed version of the STRING DB data base. |
format |
article |
author |
Kourosh Zarringhalam David Degras Christoph Brockel Daniel Ziemek |
author_facet |
Kourosh Zarringhalam David Degras Christoph Brockel Daniel Ziemek |
author_sort |
Kourosh Zarringhalam |
title |
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
title_short |
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
title_full |
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
title_fullStr |
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
title_full_unstemmed |
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
title_sort |
robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/f44a5a3539404d7d921e917d3bb63b7d |
work_keys_str_mv |
AT kouroshzarringhalam robustphenotypepredictionfromgeneexpressiondatausingdifferentialshrinkageofcoregulatedgenes AT daviddegras robustphenotypepredictionfromgeneexpressiondatausingdifferentialshrinkageofcoregulatedgenes AT christophbrockel robustphenotypepredictionfromgeneexpressiondatausingdifferentialshrinkageofcoregulatedgenes AT danielziemek robustphenotypepredictionfromgeneexpressiondatausingdifferentialshrinkageofcoregulatedgenes |
_version_ |
1718388099308847104 |