Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes
Abstract Discovery of robust diagnostic or prognostic biomarkers is a key to optimizing therapeutic benefit for select patient cohorts - an idea commonly referred to as precision medicine. Most discovery studies to derive such markers from high-dimensional transcriptomics datasets are weakly powered...
Guardado en:
Autores principales: | Kourosh Zarringhalam, David Degras, Christoph Brockel, Daniel Ziemek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f44a5a3539404d7d921e917d3bb63b7d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data-driven detection of subtype-specific differentially expressed genes
por: Lulu Chen, et al.
Publicado: (2021) -
Predictive modeling of gene expression regulation
por: Chiara Regondi, et al.
Publicado: (2021) -
Inferring Differential Networks by Integrating Gene Expression Data With Additional Knowledge
por: Chen Liu, et al.
Publicado: (2021) -
Differential contribution to gene expression prediction of histone modifications at enhancers or promoters.
por: Mar González-Ramírez, et al.
Publicado: (2021) -
Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
por: Patrick Deelen, et al.
Publicado: (2019)