Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
Abstract Background Accurate prediction of protein–ligand binding affinity is important for lowering the overall cost of drug discovery in structure-based drug design. For accurate predictions, many classical scoring functions and machine learning-based methods have been developed. However, these te...
Guardado en:
Autores principales: | Sangmin Seo, Jonghwan Choi, Sanghyun Park, Jaegyoon Ahn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f44ada125ed946ff99bc493a2989110c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multitask Interactive Attention Learning Model Based on Hand Images for Assisting Chinese Medicine in Predicting Myocardial Infarction
por: Qida Wang, et al.
Publicado: (2021) -
Protein-ligand binding affinity prediction model based on graph attention network
por: Hong Yuan, et al.
Publicado: (2021) -
Structure-based protein–ligand interaction fingerprints for binding affinity prediction
por: Debby D. Wang, et al.
Publicado: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021) -
Development features and study characteristics of mobile health apps in the management of chronic conditions: a systematic review of randomised trials
por: Maria Cucciniello, et al.
Publicado: (2021)