On Laplacian Equienergetic Signed Graphs
The Laplacian energy of a signed graph is defined as the sum of the distance of its Laplacian eigenvalues from its average degree. Two signed graphs of the same order are said to be Laplacian equienergetic if their Laplacian energies are equal. In this paper, we present several infinite families of...
Guardado en:
Autores principales: | Qingyun Tao, Lixin Tao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f44eed43de1e44009d35a7ca78f517c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Monotonicity and Symmetry of Solutions to Fractional Laplacian in Strips
por: Tao Sun, et al.
Publicado: (2021) -
Some Existence and Stability Criteria to a Generalized FBVP Having Fractional Composite p-Laplacian Operator
por: Sh. Rezapour, et al.
Publicado: (2021) -
On Omega Index and Average Degree of Graphs
por: Sadik Delen, et al.
Publicado: (2021) -
Locating and Identifying Codes in Circulant Graphs
por: Shu Jiao Song, et al.
Publicado: (2021) -
The Optimal Graph Whose Least Eigenvalue is Minimal among All Graphs via 1-2 Adjacency Matrix
por: Lubna Gul, et al.
Publicado: (2021)