On Laplacian Equienergetic Signed Graphs
The Laplacian energy of a signed graph is defined as the sum of the distance of its Laplacian eigenvalues from its average degree. Two signed graphs of the same order are said to be Laplacian equienergetic if their Laplacian energies are equal. In this paper, we present several infinite families of...
Enregistré dans:
Auteurs principaux: | Qingyun Tao, Lixin Tao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f44eed43de1e44009d35a7ca78f517c3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Monotonicity and Symmetry of Solutions to Fractional Laplacian in Strips
par: Tao Sun, et autres
Publié: (2021) -
Some Existence and Stability Criteria to a Generalized FBVP Having Fractional Composite p-Laplacian Operator
par: Sh. Rezapour, et autres
Publié: (2021) -
On Omega Index and Average Degree of Graphs
par: Sadik Delen, et autres
Publié: (2021) -
Locating and Identifying Codes in Circulant Graphs
par: Shu Jiao Song, et autres
Publié: (2021) -
The Optimal Graph Whose Least Eigenvalue is Minimal among All Graphs via 1-2 Adjacency Matrix
par: Lubna Gul, et autres
Publié: (2021)