Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii

Namrata Anand,1 Rakesh Sehgal,1 Rupinder Kaur Kanwar,2 Mohan Lal Dubey,1 Rakesh Kumar Vasishta,3 Jagat Rakesh Kanwar21Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine-Laboratory of Immunology and Molecular Biomedical Resea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: An, N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/f45970578280422c99e671b340dcc57b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f45970578280422c99e671b340dcc57b
record_format dspace
spelling oai:doaj.org-article:f45970578280422c99e671b340dcc57b2021-12-02T05:14:21ZOral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii1178-2013https://doaj.org/article/f45970578280422c99e671b340dcc57b2015-10-01T00:00:00Zhttps://www.dovepress.com/oral-administration-of-encapsulated-bovine-lactoferrin-protein-nanocap-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Namrata Anand,1 Rakesh Sehgal,1 Rupinder Kaur Kanwar,2 Mohan Lal Dubey,1 Rakesh Kumar Vasishta,3 Jagat Rakesh Kanwar21Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IndiaAbstract: Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.Keywords: nanocapsules, oral delivery, cytokines, Toxoplasma gondii, ceramic nanocapsules and reactive oxygen species, immunoreactivity, parasite loadAnNSehgal RKanwar RKDubey MLVasishta RKKanwar JRDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 6355-6369 (2015)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
An
N
Sehgal R
Kanwar RK
Dubey ML
Vasishta RK
Kanwar JR
Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
description Namrata Anand,1 Rakesh Sehgal,1 Rupinder Kaur Kanwar,2 Mohan Lal Dubey,1 Rakesh Kumar Vasishta,3 Jagat Rakesh Kanwar21Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IndiaAbstract: Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.Keywords: nanocapsules, oral delivery, cytokines, Toxoplasma gondii, ceramic nanocapsules and reactive oxygen species, immunoreactivity, parasite load
format article
author An
N
Sehgal R
Kanwar RK
Dubey ML
Vasishta RK
Kanwar JR
author_facet An
N
Sehgal R
Kanwar RK
Dubey ML
Vasishta RK
Kanwar JR
author_sort An
title Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
title_short Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
title_full Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
title_fullStr Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
title_full_unstemmed Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii
title_sort oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite toxoplasma gondii
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/f45970578280422c99e671b340dcc57b
work_keys_str_mv AT an oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT n oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT sehgalr oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT kanwarrk oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT dubeyml oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT vasishtark oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
AT kanwarjr oraladministrationofencapsulatedbovinelactoferrinproteinnanocapsulesagainstintracellularparasitetoxoplasmagondii
_version_ 1718400507409596416