Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models

Abstract This paper proposes a data augmentation method based on artificial intelligence (AI) to obtain sound level spectrum as predicting the spatial and temporal data of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. A 4D PTV has used to measure flow characteristics o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dong Kim, Arman Safdari, Kyung Chun Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f45c6c49ac2149cf8ce581169a6626ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract This paper proposes a data augmentation method based on artificial intelligence (AI) to obtain sound level spectrum as predicting the spatial and temporal data of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. A 4D PTV has used to measure flow characteristics of three side mirror models adopting the Shake-The-Box (STB) algorithm with four high-speed cameras on a robotic arm for measuring industrial scale. Helium filled soap bubbles are used as tracers in the wind tunnel experiment to characterize flow structures around automobile side mirror models. Full volumetric velocity fields and evolution of vortex structures are obtained and analyzed. Instantaneous pressure fields are deduced by solving a Poisson equation based on the 4D PTV data. To predict spatial and temporal data of velocity field, artificial intelligence (AI)-based data prediction method has applied. Adaptive Neural Fuzzy Inference System (ANFIS) based machine learning algorithm works well to find 4D missing data behind the automobile side mirror model. Using the ANFIS model, power spectrum of velocity fluctuations and sound level spectrum of pressure fluctuations are successfully obtained to assess flow and noise characteristics of three different side mirror models.