Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models
Abstract This paper proposes a data augmentation method based on artificial intelligence (AI) to obtain sound level spectrum as predicting the spatial and temporal data of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. A 4D PTV has used to measure flow characteristics o...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f45c6c49ac2149cf8ce581169a6626ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f45c6c49ac2149cf8ce581169a6626ab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f45c6c49ac2149cf8ce581169a6626ab2021-12-02T14:49:25ZSound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models10.1038/s41598-021-90734-12045-2322https://doaj.org/article/f45c6c49ac2149cf8ce581169a6626ab2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90734-1https://doaj.org/toc/2045-2322Abstract This paper proposes a data augmentation method based on artificial intelligence (AI) to obtain sound level spectrum as predicting the spatial and temporal data of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. A 4D PTV has used to measure flow characteristics of three side mirror models adopting the Shake-The-Box (STB) algorithm with four high-speed cameras on a robotic arm for measuring industrial scale. Helium filled soap bubbles are used as tracers in the wind tunnel experiment to characterize flow structures around automobile side mirror models. Full volumetric velocity fields and evolution of vortex structures are obtained and analyzed. Instantaneous pressure fields are deduced by solving a Poisson equation based on the 4D PTV data. To predict spatial and temporal data of velocity field, artificial intelligence (AI)-based data prediction method has applied. Adaptive Neural Fuzzy Inference System (ANFIS) based machine learning algorithm works well to find 4D missing data behind the automobile side mirror model. Using the ANFIS model, power spectrum of velocity fluctuations and sound level spectrum of pressure fluctuations are successfully obtained to assess flow and noise characteristics of three different side mirror models.Dong KimArman SafdariKyung Chun KimNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dong Kim Arman Safdari Kyung Chun Kim Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
description |
Abstract This paper proposes a data augmentation method based on artificial intelligence (AI) to obtain sound level spectrum as predicting the spatial and temporal data of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. A 4D PTV has used to measure flow characteristics of three side mirror models adopting the Shake-The-Box (STB) algorithm with four high-speed cameras on a robotic arm for measuring industrial scale. Helium filled soap bubbles are used as tracers in the wind tunnel experiment to characterize flow structures around automobile side mirror models. Full volumetric velocity fields and evolution of vortex structures are obtained and analyzed. Instantaneous pressure fields are deduced by solving a Poisson equation based on the 4D PTV data. To predict spatial and temporal data of velocity field, artificial intelligence (AI)-based data prediction method has applied. Adaptive Neural Fuzzy Inference System (ANFIS) based machine learning algorithm works well to find 4D missing data behind the automobile side mirror model. Using the ANFIS model, power spectrum of velocity fluctuations and sound level spectrum of pressure fluctuations are successfully obtained to assess flow and noise characteristics of three different side mirror models. |
format |
article |
author |
Dong Kim Arman Safdari Kyung Chun Kim |
author_facet |
Dong Kim Arman Safdari Kyung Chun Kim |
author_sort |
Dong Kim |
title |
Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
title_short |
Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
title_full |
Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
title_fullStr |
Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
title_full_unstemmed |
Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models |
title_sort |
sound pressure level spectrum analysis by combination of 4d ptv and anfis method around automotive side-view mirror models |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f45c6c49ac2149cf8ce581169a6626ab |
work_keys_str_mv |
AT dongkim soundpressurelevelspectrumanalysisbycombinationof4dptvandanfismethodaroundautomotivesideviewmirrormodels AT armansafdari soundpressurelevelspectrumanalysisbycombinationof4dptvandanfismethodaroundautomotivesideviewmirrormodels AT kyungchunkim soundpressurelevelspectrumanalysisbycombinationof4dptvandanfismethodaroundautomotivesideviewmirrormodels |
_version_ |
1718389486590623744 |