Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network

Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huihui Xu, Nan Liu
Formato: article
Lenguaje:EN
Publicado: Springer 2021
Materias:
Q
T
Acceso en línea:https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed depth and depth gradients fusion strategy.