Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network

Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huihui Xu, Nan Liu
Formato: article
Lenguaje:EN
Publicado: Springer 2021
Materias:
Q
T
Acceso en línea:https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f45e86bba2b9400f8c4fb691f02003f9
record_format dspace
spelling oai:doaj.org-article:f45e86bba2b9400f8c4fb691f02003f92021-12-05T12:10:05ZDetail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network10.1007/s42452-021-04882-02523-39632523-3971https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f92021-11-01T00:00:00Zhttps://doi.org/10.1007/s42452-021-04882-0https://doaj.org/toc/2523-3963https://doaj.org/toc/2523-3971Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed depth and depth gradients fusion strategy.Huihui XuNan LiuSpringerarticleDepth predictionFully convolutional residual networkGradient networkDepth gradientScienceQTechnologyTENSN Applied Sciences, Vol 3, Iss 12, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Depth prediction
Fully convolutional residual network
Gradient network
Depth gradient
Science
Q
Technology
T
spellingShingle Depth prediction
Fully convolutional residual network
Gradient network
Depth gradient
Science
Q
Technology
T
Huihui Xu
Nan Liu
Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
description Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed depth and depth gradients fusion strategy.
format article
author Huihui Xu
Nan Liu
author_facet Huihui Xu
Nan Liu
author_sort Huihui Xu
title Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
title_short Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
title_full Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
title_fullStr Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
title_full_unstemmed Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
title_sort detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
publisher Springer
publishDate 2021
url https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f9
work_keys_str_mv AT huihuixu detailpreservingdepthestimationfromasingleimagebasedonmodifiedfullyconvolutionalresidualnetworkandgradientnetwork
AT nanliu detailpreservingdepthestimationfromasingleimagebasedonmodifiedfullyconvolutionalresidualnetworkandgradientnetwork
_version_ 1718372228421124096