Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed...
Guardado en:
Autores principales: | Huihui Xu, Nan Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Monocular Depth Estimation With Extensive Pretraining
por: Hyukdoo Choi
Publicado: (2021) -
Trends of Microdiversity Reveal Depth-Dependent Evolutionary Strategies of Viruses in the Mediterranean
por: Felipe Hernandes Coutinho, et al.
Publicado: (2019) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021) -
Estimating the Magnitude and Phase of Automotive Radar Signals Under Multiple Interference Sources With Fully Convolutional Networks
por: Nicolae-Catalin Ristea, et al.
Publicado: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
por: Anusha Khan, et al.
Publicado: (2021)