Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
Article Highlights We changed the classic network and loss function to obtain the global 3D depth information of the scene. A depth gradient acquisition scheme is designed to generate the local details of the scene. We can obtain a plausible depth map with better depth details through our developed...
Enregistré dans:
Auteurs principaux: | Huihui Xu, Nan Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Springer
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f45e86bba2b9400f8c4fb691f02003f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Self-Supervised Monocular Depth Estimation With Extensive Pretraining
par: Hyukdoo Choi
Publié: (2021) -
Trends of Microdiversity Reveal Depth-Dependent Evolutionary Strategies of Viruses in the Mediterranean
par: Felipe Hernandes Coutinho, et autres
Publié: (2019) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
par: Ravichandra Madanu, et autres
Publié: (2021) -
Estimating the Magnitude and Phase of Automotive Radar Signals Under Multiple Interference Sources With Fully Convolutional Networks
par: Nicolae-Catalin Ristea, et autres
Publié: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
par: Anusha Khan, et autres
Publié: (2021)