The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion.
Task-rest interactions, defined as the modulation of brain activation during fixation periods depending on the preceding stimulation and experimental manipulation, have been described repeatedly for different cognitively demanding tasks in various regions across the brain. However, task-rest interac...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f472e8c1d1d9426a9cbdf0d5b1a70a00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f472e8c1d1d9426a9cbdf0d5b1a70a00 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f472e8c1d1d9426a9cbdf0d5b1a70a002021-11-18T08:25:41ZThe impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion.1932-620310.1371/journal.pone.0093098https://doaj.org/article/f472e8c1d1d9426a9cbdf0d5b1a70a002014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24682003/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Task-rest interactions, defined as the modulation of brain activation during fixation periods depending on the preceding stimulation and experimental manipulation, have been described repeatedly for different cognitively demanding tasks in various regions across the brain. However, task-rest interactions in emotive paradigms have received considerably less attention. In this study, we therefore investigated task-rest interactions evoked by the induction and instructed regulation of negative emotion. Whole-brain, functional MRI data were acquired from 55 healthy participants. Two-level general linear model statistics were computed to test for differences between conditions, separately for stimulation and for fixation periods, as well as for interactions between stimulation and fixation (task-rest interactions). Results showed that the regulation of negative emotion led to reverse task-rest interactions (decreased activation during stimulation but increased activation during fixation) in the amygdala as well as in visual cortex regions and to concordant task-rest interactions (increased activation during both, stimulation and fixation) in the dorsolateral prefrontal cortex as well as in a number of brain regions at the intersection of the default mode and the dorsal attention networks. Thus, this first whole-brain investigation of task-rest interactions following the induction and regulation of negative emotion identified a widespread specific modulation of brain activation in regions subserving emotion generation and regulation as well as regions implicated in attention and default mode.Jan-Peter LamkeJudith K DanielsDenise DörfelMichael GaeblerRasha Abdel RahmanFalk HummelSusanne ErkHenrik WalterPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 3, p e93098 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jan-Peter Lamke Judith K Daniels Denise Dörfel Michael Gaebler Rasha Abdel Rahman Falk Hummel Susanne Erk Henrik Walter The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
description |
Task-rest interactions, defined as the modulation of brain activation during fixation periods depending on the preceding stimulation and experimental manipulation, have been described repeatedly for different cognitively demanding tasks in various regions across the brain. However, task-rest interactions in emotive paradigms have received considerably less attention. In this study, we therefore investigated task-rest interactions evoked by the induction and instructed regulation of negative emotion. Whole-brain, functional MRI data were acquired from 55 healthy participants. Two-level general linear model statistics were computed to test for differences between conditions, separately for stimulation and for fixation periods, as well as for interactions between stimulation and fixation (task-rest interactions). Results showed that the regulation of negative emotion led to reverse task-rest interactions (decreased activation during stimulation but increased activation during fixation) in the amygdala as well as in visual cortex regions and to concordant task-rest interactions (increased activation during both, stimulation and fixation) in the dorsolateral prefrontal cortex as well as in a number of brain regions at the intersection of the default mode and the dorsal attention networks. Thus, this first whole-brain investigation of task-rest interactions following the induction and regulation of negative emotion identified a widespread specific modulation of brain activation in regions subserving emotion generation and regulation as well as regions implicated in attention and default mode. |
format |
article |
author |
Jan-Peter Lamke Judith K Daniels Denise Dörfel Michael Gaebler Rasha Abdel Rahman Falk Hummel Susanne Erk Henrik Walter |
author_facet |
Jan-Peter Lamke Judith K Daniels Denise Dörfel Michael Gaebler Rasha Abdel Rahman Falk Hummel Susanne Erk Henrik Walter |
author_sort |
Jan-Peter Lamke |
title |
The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
title_short |
The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
title_full |
The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
title_fullStr |
The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
title_full_unstemmed |
The impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
title_sort |
impact of stimulus valence and emotion regulation on sustained brain activation: task-rest switching in emotion. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/f472e8c1d1d9426a9cbdf0d5b1a70a00 |
work_keys_str_mv |
AT janpeterlamke theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT judithkdaniels theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT denisedorfel theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT michaelgaebler theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT rashaabdelrahman theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT falkhummel theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT susanneerk theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT henrikwalter theimpactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT janpeterlamke impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT judithkdaniels impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT denisedorfel impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT michaelgaebler impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT rashaabdelrahman impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT falkhummel impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT susanneerk impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion AT henrikwalter impactofstimulusvalenceandemotionregulationonsustainedbrainactivationtaskrestswitchinginemotion |
_version_ |
1718421836844236800 |