Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study.
<h4>Background</h4>The polyunsaturated fatty acid (PUFA) composition of (nerve) cell membranes may be involved in the pathophysiology of depression. Studies so far, focussed mainly on omega-3 and omega-6 PUFAs. In the present study, saturated fatty acids (SFAs), monounsaturated fatty aci...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f480c19ee65d41d4b55620da350f670c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <h4>Background</h4>The polyunsaturated fatty acid (PUFA) composition of (nerve) cell membranes may be involved in the pathophysiology of depression. Studies so far, focussed mainly on omega-3 and omega-6 PUFAs. In the present study, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and PUFAs of the omega-3, -6 and -9 series in plasma and erythrocytes of patients with recurrent major depressive disorder (MDD-R) were compared with controls.<h4>Methodology and principal findings</h4>We carried out a case-control study. The sample consisted of 137 patients with MDD-R and 65 matched non-depressed controls. In plasma and erythrocytes of patients with MDD-R the concentrations of most of the SFAs and MUFAs, and additionally erythrocyte PUFAs, all with a chain length > 20 carbon (C) atoms, were significantly lower than in the controls. In contrast, the concentrations of most of the shorter chain members (< or = 18C) of the SFAs and MUFAs were significantly higher in the patients. Estimated activities of several elongases in plasma of patients were significantly altered, whereas delta-9 desaturase activity for C14:0 and C18:0 was significantly higher.<h4>Conclusions/significance</h4>The fatty acid status of patients with MDD-R not only differs with regard to omega-3 and omega-6 PUFAs, but also concerns other fatty acids. These alterations may be due to: differences in diet, changes in synthesizing enzyme activities, higher levels of chronic (oxidative) stress but may also result from adaptive strategies by providing protection against enhanced oxidative stress and production of free radicals. |
---|