A high-throughput screen for tuberculosis progression.
One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosi...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f48d3188535341409455dd502ae3be14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f48d3188535341409455dd502ae3be14 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f48d3188535341409455dd502ae3be142021-11-18T06:58:39ZA high-throughput screen for tuberculosis progression.1932-620310.1371/journal.pone.0016779https://doaj.org/article/f48d3188535341409455dd502ae3be142011-02-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21390204/?tool=EBIhttps://doaj.org/toc/1932-6203One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo.Ralph CarvalhoJan de SonnevilleOliver W StockhammerNigel D L SavageWouter J VenemanTom H M OttenhoffRon P DirksAnnemarie H MeijerHerman P SpainkPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 2, p e16779 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ralph Carvalho Jan de Sonneville Oliver W Stockhammer Nigel D L Savage Wouter J Veneman Tom H M Ottenhoff Ron P Dirks Annemarie H Meijer Herman P Spaink A high-throughput screen for tuberculosis progression. |
description |
One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo. |
format |
article |
author |
Ralph Carvalho Jan de Sonneville Oliver W Stockhammer Nigel D L Savage Wouter J Veneman Tom H M Ottenhoff Ron P Dirks Annemarie H Meijer Herman P Spaink |
author_facet |
Ralph Carvalho Jan de Sonneville Oliver W Stockhammer Nigel D L Savage Wouter J Veneman Tom H M Ottenhoff Ron P Dirks Annemarie H Meijer Herman P Spaink |
author_sort |
Ralph Carvalho |
title |
A high-throughput screen for tuberculosis progression. |
title_short |
A high-throughput screen for tuberculosis progression. |
title_full |
A high-throughput screen for tuberculosis progression. |
title_fullStr |
A high-throughput screen for tuberculosis progression. |
title_full_unstemmed |
A high-throughput screen for tuberculosis progression. |
title_sort |
high-throughput screen for tuberculosis progression. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2011 |
url |
https://doaj.org/article/f48d3188535341409455dd502ae3be14 |
work_keys_str_mv |
AT ralphcarvalho ahighthroughputscreenfortuberculosisprogression AT jandesonneville ahighthroughputscreenfortuberculosisprogression AT oliverwstockhammer ahighthroughputscreenfortuberculosisprogression AT nigeldlsavage ahighthroughputscreenfortuberculosisprogression AT wouterjveneman ahighthroughputscreenfortuberculosisprogression AT tomhmottenhoff ahighthroughputscreenfortuberculosisprogression AT ronpdirks ahighthroughputscreenfortuberculosisprogression AT annemariehmeijer ahighthroughputscreenfortuberculosisprogression AT hermanpspaink ahighthroughputscreenfortuberculosisprogression AT ralphcarvalho highthroughputscreenfortuberculosisprogression AT jandesonneville highthroughputscreenfortuberculosisprogression AT oliverwstockhammer highthroughputscreenfortuberculosisprogression AT nigeldlsavage highthroughputscreenfortuberculosisprogression AT wouterjveneman highthroughputscreenfortuberculosisprogression AT tomhmottenhoff highthroughputscreenfortuberculosisprogression AT ronpdirks highthroughputscreenfortuberculosisprogression AT annemariehmeijer highthroughputscreenfortuberculosisprogression AT hermanpspaink highthroughputscreenfortuberculosisprogression |
_version_ |
1718424144341630976 |