Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci.
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f492bfb02a464d72ae49db0b2d0594f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci. |
---|