Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs

Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci.

Guardado en:
Detalles Bibliográficos
Autores principales: Qingbo S. Wang, David R. Kelley, Jacob Ulirsch, Masahiro Kanai, Shuvom Sadhuka, Ran Cui, Carlos Albors, Nathan Cheng, Yukinori Okada, The Biobank Japan Project, Francois Aguet, Kristin G. Ardlie, Daniel G. MacArthur, Hilary K. Finucane
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f492bfb02a464d72ae49db0b2d0594f8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f492bfb02a464d72ae49db0b2d0594f8
record_format dspace
spelling oai:doaj.org-article:f492bfb02a464d72ae49db0b2d0594f82021-12-02T15:02:50ZLeveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs10.1038/s41467-021-23134-82041-1723https://doaj.org/article/f492bfb02a464d72ae49db0b2d0594f82021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23134-8https://doaj.org/toc/2041-1723Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci.Qingbo S. WangDavid R. KelleyJacob UlirschMasahiro KanaiShuvom SadhukaRan CuiCarlos AlborsNathan ChengYukinori OkadaThe Biobank Japan ProjectFrancois AguetKristin G. ArdlieDaniel G. MacArthurHilary K. FinucaneNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Qingbo S. Wang
David R. Kelley
Jacob Ulirsch
Masahiro Kanai
Shuvom Sadhuka
Ran Cui
Carlos Albors
Nathan Cheng
Yukinori Okada
The Biobank Japan Project
Francois Aguet
Kristin G. Ardlie
Daniel G. MacArthur
Hilary K. Finucane
Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
description Finding causal variants and genes from GWAS loci results remains a challenge. Here, the authors train a model to predict if a variant affects nearby gene expression, and apply the method to identify new possible causal eQTLs and mechanisms of GWAS loci.
format article
author Qingbo S. Wang
David R. Kelley
Jacob Ulirsch
Masahiro Kanai
Shuvom Sadhuka
Ran Cui
Carlos Albors
Nathan Cheng
Yukinori Okada
The Biobank Japan Project
Francois Aguet
Kristin G. Ardlie
Daniel G. MacArthur
Hilary K. Finucane
author_facet Qingbo S. Wang
David R. Kelley
Jacob Ulirsch
Masahiro Kanai
Shuvom Sadhuka
Ran Cui
Carlos Albors
Nathan Cheng
Yukinori Okada
The Biobank Japan Project
Francois Aguet
Kristin G. Ardlie
Daniel G. MacArthur
Hilary K. Finucane
author_sort Qingbo S. Wang
title Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
title_short Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
title_full Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
title_fullStr Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
title_full_unstemmed Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs
title_sort leveraging supervised learning for functionally informed fine-mapping of cis-eqtls identifies an additional 20,913 putative causal eqtls
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f492bfb02a464d72ae49db0b2d0594f8
work_keys_str_mv AT qingboswang leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT davidrkelley leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT jacobulirsch leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT masahirokanai leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT shuvomsadhuka leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT rancui leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT carlosalbors leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT nathancheng leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT yukinoriokada leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT thebiobankjapanproject leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT francoisaguet leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT kristingardlie leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT danielgmacarthur leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
AT hilarykfinucane leveragingsupervisedlearningforfunctionallyinformedfinemappingofciseqtlsidentifiesanadditional20913putativecausaleqtls
_version_ 1718389114307346432