Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study
Abstract Purpose To investigate the predictive performance of machine learning-based CT radiomics for differentiating between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs). Methods This retrospective study enrolled 406 patients with pathologically confirmed low- and high-n...
Guardado en:
Autores principales: | Yingjie Xv, Fajin Lv, Haoming Guo, Xiang Zhou, Hao Tan, Mingzhao Xiao, Yineng Zheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4995fb21ba840a19dd8aef54220e3fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A CT-Based Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma
por: Yingjie Xv, et al.
Publicado: (2021) -
Leptin and Leptin Receptor are Expressed only in Clear Cells of Rat Epididymis Epithelia
por: Gombar,Flavia Meireles, et al.
Publicado: (2017) -
MitomiRs: their roles in mitochondria and importance in cancer cell metabolism
por: Rencelj Andrej, et al.
Publicado: (2021) -
Hepatobiliary and Gastrointestinal Involvement in Langerhans Cell Histiocytosis—Spectrum of Three Cases
por: Thara Pratap, et al.
Publicado: (2021) -
Imaging of perianal granular cell tumor with lung metastasis: A case report and literature review
por: Narjisse Aichouni, MD, et al.
Publicado: (2022)