A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers

Biomarker identification requires prohibitively large cohorts with gene expression and phenotype data. The approach introduced here learns polygenic predictors of expression from genetic and expression data, used to infer biomarker levels in patients with genetic and disease information.

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan D. Mosley, QiPing Feng, Quinn S. Wells, Sara L. Van Driest, Christian M. Shaffer, Todd L. Edwards, Lisa Bastarache, Wei-Qi Wei, Lea K. Davis, Catherine A. McCarty, Will Thompson, Christopher G. Chute, Gail P. Jarvik, Adam S. Gordon, Melody R. Palmer, David R. Crosslin, Eric B. Larson, David S. Carrell, Iftikhar J. Kullo, Jennifer A. Pacheco, Peggy L. Peissig, Murray H. Brilliant, James G. Linneman, Bahram Namjou, Marc S. Williams, Marylyn D. Ritchie, Kenneth M. Borthwick, Shefali S. Verma, Jason H. Karnes, Scott T. Weiss, Thomas J. Wang, C. Michael Stein, Josh C. Denny, Dan M. Roden
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/f49b8a4e08894b7bab01494933978a43
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!