Regression plane concept for analysing continuous cellular processes with machine learning

High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Cl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abel Szkalisity, Filippo Piccinini, Attila Beleon, Tamas Balassa, Istvan Gergely Varga, Ede Migh, Csaba Molnar, Lassi Paavolainen, Sanna Timonen, Indranil Banerjee, Elina Ikonen, Yohei Yamauchi, Istvan Ando, Jaakko Peltonen, Vilja Pietiäinen, Viktor Honti, Peter Horvath
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f49f0d2d8b5f4b588375e657d0654bfa
record_format dspace
spelling oai:doaj.org-article:f49f0d2d8b5f4b588375e657d0654bfa2021-12-02T14:29:13ZRegression plane concept for analysing continuous cellular processes with machine learning10.1038/s41467-021-22866-x2041-1723https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22866-xhttps://doaj.org/toc/2041-1723High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Classifier.Abel SzkalisityFilippo PiccininiAttila BeleonTamas BalassaIstvan Gergely VargaEde MighCsaba MolnarLassi PaavolainenSanna TimonenIndranil BanerjeeElina IkonenYohei YamauchiIstvan AndoJaakko PeltonenVilja PietiäinenViktor HontiPeter HorvathNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Abel Szkalisity
Filippo Piccinini
Attila Beleon
Tamas Balassa
Istvan Gergely Varga
Ede Migh
Csaba Molnar
Lassi Paavolainen
Sanna Timonen
Indranil Banerjee
Elina Ikonen
Yohei Yamauchi
Istvan Ando
Jaakko Peltonen
Vilja Pietiäinen
Viktor Honti
Peter Horvath
Regression plane concept for analysing continuous cellular processes with machine learning
description High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Classifier.
format article
author Abel Szkalisity
Filippo Piccinini
Attila Beleon
Tamas Balassa
Istvan Gergely Varga
Ede Migh
Csaba Molnar
Lassi Paavolainen
Sanna Timonen
Indranil Banerjee
Elina Ikonen
Yohei Yamauchi
Istvan Ando
Jaakko Peltonen
Vilja Pietiäinen
Viktor Honti
Peter Horvath
author_facet Abel Szkalisity
Filippo Piccinini
Attila Beleon
Tamas Balassa
Istvan Gergely Varga
Ede Migh
Csaba Molnar
Lassi Paavolainen
Sanna Timonen
Indranil Banerjee
Elina Ikonen
Yohei Yamauchi
Istvan Ando
Jaakko Peltonen
Vilja Pietiäinen
Viktor Honti
Peter Horvath
author_sort Abel Szkalisity
title Regression plane concept for analysing continuous cellular processes with machine learning
title_short Regression plane concept for analysing continuous cellular processes with machine learning
title_full Regression plane concept for analysing continuous cellular processes with machine learning
title_fullStr Regression plane concept for analysing continuous cellular processes with machine learning
title_full_unstemmed Regression plane concept for analysing continuous cellular processes with machine learning
title_sort regression plane concept for analysing continuous cellular processes with machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa
work_keys_str_mv AT abelszkalisity regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT filippopiccinini regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT attilabeleon regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT tamasbalassa regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT istvangergelyvarga regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT edemigh regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT csabamolnar regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT lassipaavolainen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT sannatimonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT indranilbanerjee regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT elinaikonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT yoheiyamauchi regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT istvanando regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT jaakkopeltonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT viljapietiainen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT viktorhonti regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
AT peterhorvath regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning
_version_ 1718391227744780288