Regression plane concept for analysing continuous cellular processes with machine learning
High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Cl...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f49f0d2d8b5f4b588375e657d0654bfa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f49f0d2d8b5f4b588375e657d0654bfa2021-12-02T14:29:13ZRegression plane concept for analysing continuous cellular processes with machine learning10.1038/s41467-021-22866-x2041-1723https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22866-xhttps://doaj.org/toc/2041-1723High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Classifier.Abel SzkalisityFilippo PiccininiAttila BeleonTamas BalassaIstvan Gergely VargaEde MighCsaba MolnarLassi PaavolainenSanna TimonenIndranil BanerjeeElina IkonenYohei YamauchiIstvan AndoJaakko PeltonenVilja PietiäinenViktor HontiPeter HorvathNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Abel Szkalisity Filippo Piccinini Attila Beleon Tamas Balassa Istvan Gergely Varga Ede Migh Csaba Molnar Lassi Paavolainen Sanna Timonen Indranil Banerjee Elina Ikonen Yohei Yamauchi Istvan Ando Jaakko Peltonen Vilja Pietiäinen Viktor Honti Peter Horvath Regression plane concept for analysing continuous cellular processes with machine learning |
description |
High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Classifier. |
format |
article |
author |
Abel Szkalisity Filippo Piccinini Attila Beleon Tamas Balassa Istvan Gergely Varga Ede Migh Csaba Molnar Lassi Paavolainen Sanna Timonen Indranil Banerjee Elina Ikonen Yohei Yamauchi Istvan Ando Jaakko Peltonen Vilja Pietiäinen Viktor Honti Peter Horvath |
author_facet |
Abel Szkalisity Filippo Piccinini Attila Beleon Tamas Balassa Istvan Gergely Varga Ede Migh Csaba Molnar Lassi Paavolainen Sanna Timonen Indranil Banerjee Elina Ikonen Yohei Yamauchi Istvan Ando Jaakko Peltonen Vilja Pietiäinen Viktor Honti Peter Horvath |
author_sort |
Abel Szkalisity |
title |
Regression plane concept for analysing continuous cellular processes with machine learning |
title_short |
Regression plane concept for analysing continuous cellular processes with machine learning |
title_full |
Regression plane concept for analysing continuous cellular processes with machine learning |
title_fullStr |
Regression plane concept for analysing continuous cellular processes with machine learning |
title_full_unstemmed |
Regression plane concept for analysing continuous cellular processes with machine learning |
title_sort |
regression plane concept for analysing continuous cellular processes with machine learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa |
work_keys_str_mv |
AT abelszkalisity regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT filippopiccinini regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT attilabeleon regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT tamasbalassa regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT istvangergelyvarga regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT edemigh regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT csabamolnar regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT lassipaavolainen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT sannatimonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT indranilbanerjee regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT elinaikonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT yoheiyamauchi regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT istvanando regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT jaakkopeltonen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT viljapietiainen regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT viktorhonti regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning AT peterhorvath regressionplaneconceptforanalysingcontinuouscellularprocesseswithmachinelearning |
_version_ |
1718391227744780288 |