Regression plane concept for analysing continuous cellular processes with machine learning
High-content screening prompted the development of software enabling discrete phenotypic analysis of single cells. Here, the authors show that supervised continuous machine learning can drive novel discoveries in diverse imaging experiments and present the Regression Plane module of Advanced Cell Cl...
Enregistré dans:
Auteurs principaux: | Abel Szkalisity, Filippo Piccinini, Attila Beleon, Tamas Balassa, Istvan Gergely Varga, Ede Migh, Csaba Molnar, Lassi Paavolainen, Sanna Timonen, Indranil Banerjee, Elina Ikonen, Yohei Yamauchi, Istvan Ando, Jaakko Peltonen, Vilja Pietiäinen, Viktor Honti, Peter Horvath |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f49f0d2d8b5f4b588375e657d0654bfa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Intelligent image-based in situ single-cell isolation
par: Csilla Brasko, et autres
Publié: (2018) -
SpheroidPicker for automated 3D cell culture manipulation using deep learning
par: Istvan Grexa, et autres
Publié: (2021) -
Dataset of cortical activity recorded with high spatial resolution from anesthetized rats
par: Csaba Horváth, et autres
Publié: (2021) -
Complex events initiated by individual spikes in the human cerebral cortex.
par: Gábor Molnár, et autres
Publié: (2008) -
Hierarchy and control of ageing-related methylation networks.
par: Gergely Palla, et autres
Publié: (2021)