Segmentation of infected region in CT images of COVID-19 patients based on QC-HC U-net
Abstract Since the outbreak of COVID-19 in 2019, the rapid spread of the epidemic has brought huge challenges to medical institutions. If the pathological region in the COVID-19 CT image can be automatically segmented, it will help doctors quickly determine the patient’s infection, thereby speeding...
Guardado en:
Autores principales: | Qin Zhang, Xiaoqiang Ren, Benzheng Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4a332f3fd3a4521a1d8c50c1117603d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net
por: Pengfei Cheng, et al.
Publicado: (2021) -
Segmentation and recognition of breast ultrasound images based on an expanded U-Net.
por: Yanjun Guo, et al.
Publicado: (2021) -
Health Vigilance for Medical Imaging Diagnostic Optimization: Automated segmentation of COVID-19 lung infection from CT images
por: Mohamed Chala, et al.
Publicado: (2021) -
Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
por: Anuja Arora, et al.
Publicado: (2021) -
Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
por: Faizad Ullah, et al.
Publicado: (2021)