Combined attributes of soil nematode communities as indicators of grassland degradation
As a prominent component of the terrestrial biosphere, soil nematodes constitute a potential indicator for biomonitoring systems. Although nematodes respond to environmental variables or gradients, the mechanism and reason of changes in nematode assemblages with the retrogression of grasslands induc...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4bfe47267d041949f7e5400a69f655c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f4bfe47267d041949f7e5400a69f655c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f4bfe47267d041949f7e5400a69f655c2021-12-01T05:00:47ZCombined attributes of soil nematode communities as indicators of grassland degradation1470-160X10.1016/j.ecolind.2021.108215https://doaj.org/article/f4bfe47267d041949f7e5400a69f655c2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21008803https://doaj.org/toc/1470-160XAs a prominent component of the terrestrial biosphere, soil nematodes constitute a potential indicator for biomonitoring systems. Although nematodes respond to environmental variables or gradients, the mechanism and reason of changes in nematode assemblages with the retrogression of grasslands induced by overgrazing remain poorly understood. This study aimed to comprehensively assess the response of nematodes to degraded grasslands. We characterized shifts in multiple attributes of nematode communities across three grasslands with different levels of degradation. Importantly, we found a crucial potential threshold for decreases in the relative abundance and diversity of omnivore-predators when grassland degradation exceeds the moderate level (soil salinity ranging from 200 to 400 μS cm−1). Exceeding the threshold (soil salinity above 400 μS cm−1), rare genera with specific requirements disappeared, and the common taxa of Dolichodoridae, Eumonhystera, and Prismatolaimus accounted for 51.6% of the total nematode population. The top-down control was eliminated, which created a simple and less stable soil food web in severely degraded grasslands. Meanwhile, the abundance and functional metabolic footprint of nematode communities showed a hump-shaped pattern, reflecting compensatory mechanisms below the threshold. Our study highlights the dominant role of soil salinity in nematode communities, overriding the importance of food resources. Omnivore-predators are highly sensitive to soil salinity and their relative abundance and diversity can be used in combination as integrated indicators of ecological degradation. This study provides reliable and complementary information for evaluating grassland degradation or attempting restoration.Jingjing YangXuefeng WuYing ChenZhanbo YangJushan LiuDonghui WuDeli WangElsevierarticleSoil faunaEnvironmental quality assessmentTop-down effectsDegraded grasslandsSoil salinizationNorth ChinaEcologyQH540-549.5ENEcological Indicators, Vol 131, Iss , Pp 108215- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Soil fauna Environmental quality assessment Top-down effects Degraded grasslands Soil salinization North China Ecology QH540-549.5 |
spellingShingle |
Soil fauna Environmental quality assessment Top-down effects Degraded grasslands Soil salinization North China Ecology QH540-549.5 Jingjing Yang Xuefeng Wu Ying Chen Zhanbo Yang Jushan Liu Donghui Wu Deli Wang Combined attributes of soil nematode communities as indicators of grassland degradation |
description |
As a prominent component of the terrestrial biosphere, soil nematodes constitute a potential indicator for biomonitoring systems. Although nematodes respond to environmental variables or gradients, the mechanism and reason of changes in nematode assemblages with the retrogression of grasslands induced by overgrazing remain poorly understood. This study aimed to comprehensively assess the response of nematodes to degraded grasslands. We characterized shifts in multiple attributes of nematode communities across three grasslands with different levels of degradation. Importantly, we found a crucial potential threshold for decreases in the relative abundance and diversity of omnivore-predators when grassland degradation exceeds the moderate level (soil salinity ranging from 200 to 400 μS cm−1). Exceeding the threshold (soil salinity above 400 μS cm−1), rare genera with specific requirements disappeared, and the common taxa of Dolichodoridae, Eumonhystera, and Prismatolaimus accounted for 51.6% of the total nematode population. The top-down control was eliminated, which created a simple and less stable soil food web in severely degraded grasslands. Meanwhile, the abundance and functional metabolic footprint of nematode communities showed a hump-shaped pattern, reflecting compensatory mechanisms below the threshold. Our study highlights the dominant role of soil salinity in nematode communities, overriding the importance of food resources. Omnivore-predators are highly sensitive to soil salinity and their relative abundance and diversity can be used in combination as integrated indicators of ecological degradation. This study provides reliable and complementary information for evaluating grassland degradation or attempting restoration. |
format |
article |
author |
Jingjing Yang Xuefeng Wu Ying Chen Zhanbo Yang Jushan Liu Donghui Wu Deli Wang |
author_facet |
Jingjing Yang Xuefeng Wu Ying Chen Zhanbo Yang Jushan Liu Donghui Wu Deli Wang |
author_sort |
Jingjing Yang |
title |
Combined attributes of soil nematode communities as indicators of grassland degradation |
title_short |
Combined attributes of soil nematode communities as indicators of grassland degradation |
title_full |
Combined attributes of soil nematode communities as indicators of grassland degradation |
title_fullStr |
Combined attributes of soil nematode communities as indicators of grassland degradation |
title_full_unstemmed |
Combined attributes of soil nematode communities as indicators of grassland degradation |
title_sort |
combined attributes of soil nematode communities as indicators of grassland degradation |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/f4bfe47267d041949f7e5400a69f655c |
work_keys_str_mv |
AT jingjingyang combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT xuefengwu combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT yingchen combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT zhanboyang combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT jushanliu combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT donghuiwu combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation AT deliwang combinedattributesofsoilnematodecommunitiesasindicatorsofgrasslanddegradation |
_version_ |
1718405639477133312 |