Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World

This paper shows the efficacy of a novel urban categorization framework based on deep learning, and a novel categorization method customized for cities in the global south. The proposed categorization method assesses urban space broadly on two dimensions—the states of urbanization and the architectu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. K. M. Mahbubur Rahman, Moinul Zaber, Qianwei Cheng, Abu Bakar Siddik Nayem, Anis Sarker, Ovi Paul, Ryosuke Shibasaki
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f4c4f4ee1818416abeee7c944fb0485f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f4c4f4ee1818416abeee7c944fb0485f
record_format dspace
spelling oai:doaj.org-article:f4c4f4ee1818416abeee7c944fb0485f2021-11-25T18:56:42ZApplying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World10.3390/s212274691424-8220https://doaj.org/article/f4c4f4ee1818416abeee7c944fb0485f2021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7469https://doaj.org/toc/1424-8220This paper shows the efficacy of a novel urban categorization framework based on deep learning, and a novel categorization method customized for cities in the global south. The proposed categorization method assesses urban space broadly on two dimensions—the states of urbanization and the architectural form of the units observed. This paper shows how the sixteen sub-categories can be used by state-of-the-art deep learning modules (fully convolutional network FCN-8, U-Net, and DeepLabv3+) to categorize formal and informal urban areas in seven urban cities in the developing world—Dhaka, Nairobi, Jakarta, Guangzhou, Mumbai, Cairo, and Lima. Firstly, an expert visually annotated and categorized 50 × 50 km Google Earth images of the cities. Each urban space was divided into four socioeconomic categories: (1) highly informal area; (2) moderately informal area; (3) moderately formal area, and (4) highly formal area. Then, three models mentioned above were used to categorize urban spaces. Image encompassing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the urban space was used to train the models, and the remaining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula> was used for testing and validation of each city. The DeepLabv3+ model can segment the test part with an average accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Dhaka, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Nairobi, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Jakarta, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Guangzhou city, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.25</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Mumbai, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Cairo, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Lima. These results are the best for the DeepLabv3+ model among all. Thus, DeepLabv3+ shows an overall high accuracy level for most of the measuring parameters for all cities, making it highly scalable, readily usable to understand the cities’ current conditions, forecast land use growth, and other computational modeling tasks. Therefore, the proposed categorization method is also suited for real-time socioeconomic comparative analysis among cities, making it an essential tool for the policymakers to plan future sustainable urban spaces.A. K. M. Mahbubur RahmanMoinul ZaberQianwei ChengAbu Bakar Siddik NayemAnis SarkerOvi PaulRyosuke ShibasakiMDPI AGarticleurbancategorizationbuildingplanningstructuressustainableChemical technologyTP1-1185ENSensors, Vol 21, Iss 7469, p 7469 (2021)
institution DOAJ
collection DOAJ
language EN
topic urban
categorization
building
planning
structures
sustainable
Chemical technology
TP1-1185
spellingShingle urban
categorization
building
planning
structures
sustainable
Chemical technology
TP1-1185
A. K. M. Mahbubur Rahman
Moinul Zaber
Qianwei Cheng
Abu Bakar Siddik Nayem
Anis Sarker
Ovi Paul
Ryosuke Shibasaki
Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
description This paper shows the efficacy of a novel urban categorization framework based on deep learning, and a novel categorization method customized for cities in the global south. The proposed categorization method assesses urban space broadly on two dimensions—the states of urbanization and the architectural form of the units observed. This paper shows how the sixteen sub-categories can be used by state-of-the-art deep learning modules (fully convolutional network FCN-8, U-Net, and DeepLabv3+) to categorize formal and informal urban areas in seven urban cities in the developing world—Dhaka, Nairobi, Jakarta, Guangzhou, Mumbai, Cairo, and Lima. Firstly, an expert visually annotated and categorized 50 × 50 km Google Earth images of the cities. Each urban space was divided into four socioeconomic categories: (1) highly informal area; (2) moderately informal area; (3) moderately formal area, and (4) highly formal area. Then, three models mentioned above were used to categorize urban spaces. Image encompassing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the urban space was used to train the models, and the remaining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula> was used for testing and validation of each city. The DeepLabv3+ model can segment the test part with an average accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Dhaka, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Nairobi, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Jakarta, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.0</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Guangzhou city, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.25</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Mumbai, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Cairo, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.75</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Lima. These results are the best for the DeepLabv3+ model among all. Thus, DeepLabv3+ shows an overall high accuracy level for most of the measuring parameters for all cities, making it highly scalable, readily usable to understand the cities’ current conditions, forecast land use growth, and other computational modeling tasks. Therefore, the proposed categorization method is also suited for real-time socioeconomic comparative analysis among cities, making it an essential tool for the policymakers to plan future sustainable urban spaces.
format article
author A. K. M. Mahbubur Rahman
Moinul Zaber
Qianwei Cheng
Abu Bakar Siddik Nayem
Anis Sarker
Ovi Paul
Ryosuke Shibasaki
author_facet A. K. M. Mahbubur Rahman
Moinul Zaber
Qianwei Cheng
Abu Bakar Siddik Nayem
Anis Sarker
Ovi Paul
Ryosuke Shibasaki
author_sort A. K. M. Mahbubur Rahman
title Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
title_short Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
title_full Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
title_fullStr Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
title_full_unstemmed Applying State-of-the-Art Deep-Learning Methods to Classify Urban Cities of the Developing World
title_sort applying state-of-the-art deep-learning methods to classify urban cities of the developing world
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f4c4f4ee1818416abeee7c944fb0485f
work_keys_str_mv AT akmmahbuburrahman applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT moinulzaber applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT qianweicheng applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT abubakarsiddiknayem applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT anissarker applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT ovipaul applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
AT ryosukeshibasaki applyingstateoftheartdeeplearningmethodstoclassifyurbancitiesofthedevelopingworld
_version_ 1718410563495657472