Approximations to linear Klein–Gordon Equations using Haar wavelet
In this research article, two Haar wavelet collocation methods (HWCMs) (namely one dimensional HWCM and two dimensional HWCM) are adapted to approximate linear homogeneous and linear non-homogeneous Klein–Gordon equations. The results obtained from both methods are compared with exact solutions. Mor...
Guardado en:
Autores principales: | Sana Ikram, Sidra Saleem, Malik Zawwar Hussain |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4c664b45c9b40d99ad17b7ddab74d72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Asymptotics for Klein-Gordon equation
por: Marin,Ana M, et al.
Publicado: (2013) -
A statistical study of COVID-19 pandemic in Egypt
por: Radwan Taha
Publicado: (2021) -
Corporate Social Responsibility and Organizational Performance: Mediating Role of Employee Job Satisfaction
por: YuSheng Kong, et al.
Publicado: (2021) -
Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes
por: Xuecan Zhu, et al.
Publicado: (2018) -
LIQUID-PHASE HYDROGENATION OF m-DINITROBENZENE OVER PLATINUM CATALYSTS
por: ROJAS,HUGO, et al.
Publicado: (2011)