Approximations to linear Klein–Gordon Equations using Haar wavelet
In this research article, two Haar wavelet collocation methods (HWCMs) (namely one dimensional HWCM and two dimensional HWCM) are adapted to approximate linear homogeneous and linear non-homogeneous Klein–Gordon equations. The results obtained from both methods are compared with exact solutions. Mor...
Enregistré dans:
Auteurs principaux: | Sana Ikram, Sidra Saleem, Malik Zawwar Hussain |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f4c664b45c9b40d99ad17b7ddab74d72 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Asymptotics for Klein-Gordon equation
par: Marin,Ana M, et autres
Publié: (2013) -
A statistical study of COVID-19 pandemic in Egypt
par: Radwan Taha
Publié: (2021) -
Corporate Social Responsibility and Organizational Performance: Mediating Role of Employee Job Satisfaction
par: YuSheng Kong, et autres
Publié: (2021) -
Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes
par: Xuecan Zhu, et autres
Publié: (2018) -
LIQUID-PHASE HYDROGENATION OF m-DINITROBENZENE OVER PLATINUM CATALYSTS
par: ROJAS,HUGO, et autres
Publié: (2011)