Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

Mateusz Wierzbicki,1 Sławomir Jaworski,1 Marta Kutwin,1 Marta Grodzik,1 Barbara Strojny,1 Natalia Kurantowicz,1 Krzysztof Zdunek,2 Rafał Chodun,2 André Chwalibog,3 Ewa Sawosz1 1Division of Nanobiotechnology, Warsaw University of Life Science, 2Faculty of Materials Science and Engineering...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wierzbicki M, Jaworski S, Kutwin M, Grodzik M, Strojny B, Kurantowicz N, Zdunek K, Chodun R, Chwalibog A, Sawosz E
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/f4cbde414d9149aabd157d4019ca58a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f4cbde414d9149aabd157d4019ca58a7
record_format dspace
spelling oai:doaj.org-article:f4cbde414d9149aabd157d4019ca58a72021-12-02T07:21:41ZDiamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion1178-2013https://doaj.org/article/f4cbde414d9149aabd157d4019ca58a72017-10-01T00:00:00Zhttps://www.dovepress.com/diamond-graphite-and-graphene-oxide-nanoparticles-decrease-migration-a-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Mateusz Wierzbicki,1 Sławomir Jaworski,1 Marta Kutwin,1 Marta Grodzik,1 Barbara Strojny,1 Natalia Kurantowicz,1 Krzysztof Zdunek,2 Rafał Chodun,2 André Chwalibog,3 Ewa Sawosz1 1Division of Nanobiotechnology, Warsaw University of Life Science, 2Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark Abstract: The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment. Keywords: diamond, graphene oxide, graphite, nanoparticles, glioblastoma, migration, invasivenessWierzbicki MJaworski SKutwin MGrodzik MStrojny BKurantowicz NZdunek KChodun RChwalibog ASawosz EDove Medical PressarticleDiamondgraphene oxidegraphitenanoparticlesglioblastomamigrationinvasivenessMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 7241-7254 (2017)
institution DOAJ
collection DOAJ
language EN
topic Diamond
graphene oxide
graphite
nanoparticles
glioblastoma
migration
invasiveness
Medicine (General)
R5-920
spellingShingle Diamond
graphene oxide
graphite
nanoparticles
glioblastoma
migration
invasiveness
Medicine (General)
R5-920
Wierzbicki M
Jaworski S
Kutwin M
Grodzik M
Strojny B
Kurantowicz N
Zdunek K
Chodun R
Chwalibog A
Sawosz E
Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
description Mateusz Wierzbicki,1 Sławomir Jaworski,1 Marta Kutwin,1 Marta Grodzik,1 Barbara Strojny,1 Natalia Kurantowicz,1 Krzysztof Zdunek,2 Rafał Chodun,2 André Chwalibog,3 Ewa Sawosz1 1Division of Nanobiotechnology, Warsaw University of Life Science, 2Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark Abstract: The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment. Keywords: diamond, graphene oxide, graphite, nanoparticles, glioblastoma, migration, invasiveness
format article
author Wierzbicki M
Jaworski S
Kutwin M
Grodzik M
Strojny B
Kurantowicz N
Zdunek K
Chodun R
Chwalibog A
Sawosz E
author_facet Wierzbicki M
Jaworski S
Kutwin M
Grodzik M
Strojny B
Kurantowicz N
Zdunek K
Chodun R
Chwalibog A
Sawosz E
author_sort Wierzbicki M
title Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
title_short Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
title_full Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
title_fullStr Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
title_full_unstemmed Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
title_sort diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/f4cbde414d9149aabd157d4019ca58a7
work_keys_str_mv AT wierzbickim diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT jaworskis diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT kutwinm diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT grodzikm diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT strojnyb diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT kurantowiczn diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT zdunekk diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT chodunr diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT chwaliboga diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
AT sawosze diamondgraphiteandgrapheneoxidenanoparticlesdecreasemigrationandinvasivenessinglioblastomacelllinesbyimpairingextracellularadhesion
_version_ 1718399493702942720