Biological Network Inference With GRASP: A Bayesian Network Structure Learning Method Using Adaptive Sequential Monte Carlo
Bayesian networks (BNs) provide a probabilistic, graphical framework for modeling high-dimensional joint distributions with complex correlation structures. BNs have wide applications in many disciplines, including biology, social science, finance and biomedical science. Despite extensive studies in...
Guardado en:
Autores principales: | Kaixian Yu, Zihan Cui, Xin Sui, Xing Qiu, Jinfeng Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4d512a1e9d94907830b11973871dde9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR)
por: Saavedra,Javier, et al.
Publicado: (2013) -
MINIMAL LOSS RECONFIGURATION CONSIDERING RANDOM LOAD: APPLICATIONS TO REAL NETWORKS
por: Opazo Mora,Hugo, et al.
Publicado: (2008) -
Adaptive Magnetic Hamiltonian Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Looking for Sustainable Urban Mobility through Bayesian Networks
por: Giovanni Fusco
Publicado: (2004)