Application of Convolutional Neural Network in Fault Line Selection of Distribution Network
Aiming at the problem that the effect of the existing fault line selection methods is mainly determined by the fault features constructed by manual extraction, and the fault feature extraction process is complex and time-consuming, a new method based on convolutional neural network (CNN) is proposed...
Guardado en:
Autores principales: | Jingjing Tian, Fang Geng, Feng Zhao, Fengyang Gao, Xinqiang Niu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Tamkang University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4f1c7caf231413f81a2527550918bbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards the Integration of Reliability and Security Mechanisms to Enhance the Fault Resilience of Neural Networks
por: Nikolaos Ioannis Deligiannis, et al.
Publicado: (2021) -
Single-phase grounding fault line selection method based on zero-sequence current increment
por: Bai Hao
Publicado: (2022) -
An Efficient Heartbeats Classifier Based on Optimizing Convolutional Neural Network Model
por: Eman Maghawry, et al.
Publicado: (2021) -
Multispectral Fusion of RGB and NIR Images Using Weighted Least Squares and Convolution Neural Networks
por: Cheolkon Jung, et al.
Publicado: (2021) -
AN ENHANCED MULTIMODAL BIOMETRIC SYSTEM BASED ON CONVOLUTIONAL NEURAL NETWORK
por: LAWRENCE OMOTOSHO, et al.
Publicado: (2021)