Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown

Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adam Krysztofiak, Klaudia Szymonowicz, Julian Hlouschek, Kexu Xiang, Christoph Waterkamp, Safa Larafa, Isabell Goetting, Silvia Vega-Rubin-de-Celis, Carsten Theiss, Veronika Matschke, Daniel Hoffmann, Verena Jendrossek, Johann Matschke
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f4f90a877f724fafa3cbfea6ae94db1b
record_format dspace
spelling oai:doaj.org-article:f4f90a877f724fafa3cbfea6ae94db1b2021-11-20T05:10:44ZMetabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown2589-004210.1016/j.isci.2021.103366https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221013377https://doaj.org/toc/2589-0042Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.Adam KrysztofiakKlaudia SzymonowiczJulian HlouschekKexu XiangChristoph WaterkampSafa LarafaIsabell GoettingSilvia Vega-Rubin-de-CelisCarsten TheissVeronika MatschkeDaniel HoffmannVerena JendrossekJohann MatschkeElsevierarticleMathematical biosciencesCancer systems biologyCancerScienceQENiScience, Vol 24, Iss 11, Pp 103366- (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematical biosciences
Cancer systems biology
Cancer
Science
Q
spellingShingle Mathematical biosciences
Cancer systems biology
Cancer
Science
Q
Adam Krysztofiak
Klaudia Szymonowicz
Julian Hlouschek
Kexu Xiang
Christoph Waterkamp
Safa Larafa
Isabell Goetting
Silvia Vega-Rubin-de-Celis
Carsten Theiss
Veronika Matschke
Daniel Hoffmann
Verena Jendrossek
Johann Matschke
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
description Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
format article
author Adam Krysztofiak
Klaudia Szymonowicz
Julian Hlouschek
Kexu Xiang
Christoph Waterkamp
Safa Larafa
Isabell Goetting
Silvia Vega-Rubin-de-Celis
Carsten Theiss
Veronika Matschke
Daniel Hoffmann
Verena Jendrossek
Johann Matschke
author_facet Adam Krysztofiak
Klaudia Szymonowicz
Julian Hlouschek
Kexu Xiang
Christoph Waterkamp
Safa Larafa
Isabell Goetting
Silvia Vega-Rubin-de-Celis
Carsten Theiss
Veronika Matschke
Daniel Hoffmann
Verena Jendrossek
Johann Matschke
author_sort Adam Krysztofiak
title Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
title_short Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
title_full Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
title_fullStr Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
title_full_unstemmed Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
title_sort metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
publisher Elsevier
publishDate 2021
url https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b
work_keys_str_mv AT adamkrysztofiak metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT klaudiaszymonowicz metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT julianhlouschek metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT kexuxiang metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT christophwaterkamp metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT safalarafa metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT isabellgoetting metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT silviavegarubindecelis metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT carstentheiss metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT veronikamatschke metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT danielhoffmann metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT verenajendrossek metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
AT johannmatschke metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown
_version_ 1718419576804343808