Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown
Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological d...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f4f90a877f724fafa3cbfea6ae94db1b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f4f90a877f724fafa3cbfea6ae94db1b2021-11-20T05:10:44ZMetabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown2589-004210.1016/j.isci.2021.103366https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221013377https://doaj.org/toc/2589-0042Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.Adam KrysztofiakKlaudia SzymonowiczJulian HlouschekKexu XiangChristoph WaterkampSafa LarafaIsabell GoettingSilvia Vega-Rubin-de-CelisCarsten TheissVeronika MatschkeDaniel HoffmannVerena JendrossekJohann MatschkeElsevierarticleMathematical biosciencesCancer systems biologyCancerScienceQENiScience, Vol 24, Iss 11, Pp 103366- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematical biosciences Cancer systems biology Cancer Science Q |
spellingShingle |
Mathematical biosciences Cancer systems biology Cancer Science Q Adam Krysztofiak Klaudia Szymonowicz Julian Hlouschek Kexu Xiang Christoph Waterkamp Safa Larafa Isabell Goetting Silvia Vega-Rubin-de-Celis Carsten Theiss Veronika Matschke Daniel Hoffmann Verena Jendrossek Johann Matschke Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
description |
Summary: Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance. |
format |
article |
author |
Adam Krysztofiak Klaudia Szymonowicz Julian Hlouschek Kexu Xiang Christoph Waterkamp Safa Larafa Isabell Goetting Silvia Vega-Rubin-de-Celis Carsten Theiss Veronika Matschke Daniel Hoffmann Verena Jendrossek Johann Matschke |
author_facet |
Adam Krysztofiak Klaudia Szymonowicz Julian Hlouschek Kexu Xiang Christoph Waterkamp Safa Larafa Isabell Goetting Silvia Vega-Rubin-de-Celis Carsten Theiss Veronika Matschke Daniel Hoffmann Verena Jendrossek Johann Matschke |
author_sort |
Adam Krysztofiak |
title |
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
title_short |
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
title_full |
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
title_fullStr |
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
title_full_unstemmed |
Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
title_sort |
metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/f4f90a877f724fafa3cbfea6ae94db1b |
work_keys_str_mv |
AT adamkrysztofiak metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT klaudiaszymonowicz metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT julianhlouschek metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT kexuxiang metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT christophwaterkamp metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT safalarafa metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT isabellgoetting metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT silviavegarubindecelis metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT carstentheiss metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT veronikamatschke metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT danielhoffmann metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT verenajendrossek metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown AT johannmatschke metabolismofcancercellscommonlyrespondstoirradiationbyatransientearlymitochondrialshutdown |
_version_ |
1718419576804343808 |